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Abstract: We explore brane induced gravity on a 3-brane in six locally flat dimensions.

To regulate the short distance singularities in the brane core, we resolve the thin brane

by a cylindrical 4-brane, with the geometry of 4D Minkowski × a circle, which has an

axion flux to cancel the vacuum pressure in the compact direction. We discover a large

diversity of possible solutions controlled by the axion flux, as governed by its boundary

conditions. Hence brane induced gravity models really give rise to a landscape of vacua,

at least semiclassically. For sub-critical tensions, the crossover scale, below which gravity

may look 4D, and the effective 4D gravitational coupling are sensitive to vacuum energy.

This shows how the vacuum energy problem manifests in brane induced gravity: instead of

tuning the 4D curvature, generically one must tune the crossover scale. On the other hand,

in the near-critical limit, branes live inside very deep throats which efficiently compactify

the angular dimension. In there, 4D gravity first changes to 5D, and only later to 6D.

The crossover scale saturates at the gravitational see-saw scale, independent of the tension.

Using the fields of static loops on a wrapped brane, we check the perturbative description

of long range gravity below the crossover scale. In sub-critical cases the scalars are strongly

coupled already at the crossover scale even in the vacuum, because the brane bending is

turned on by the axion flux. Near the critical limit, linearized perturbation theory remains

under control below the crossover scale, and we find that linearized gravity around the

vacuum looks like a scalar-tensor theory.
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1. Introduction

1.1 Prologue

The mystery of the cosmological constant is arguably the most pressing and puzzling prob-

lem in contemporary fundamental physics. To date, the attempts to explain a small cos-

mological constant in the framework of effective field theory formulation of matter coupled

to gravity, based on conventional lore of naturalness alone, have not yielded an answer

(see the classic work [1] which still provides a state-of-the-art review). On the other hand,

cosmological observations [2] strongly suggesting a small cosmological constant, and the

discovery of the landscape of string vacua [3], have lent support to the idea of statistical

selection of vacua, and the value of the cosmological constant in them [4]–[9], prompting a

new debate about anthropic reasoning in physics.
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One may try to alter the problem by embedding our universe in a fundamentally

higher-dimensional space-time in some way [10]–[12]. If, for example, our universe is a

brane in extra dimensions, it would also have extrinsic curvature, and then one may divert

the brane vacuum energy into the extrinsic curvature [12]. In this way, the vacuum energy

could remain invisible to long distance 4D gravity, yielding a very weakly curved universe.

However, while attempting to recover 4D General Relativity at large distances by com-

pactifying the bulk, with covariantly conserved sources, one needed additional branes in

the bulk, that restore a fine-tuning similar to the standard 4D one [12, 13]. The resulting

picture was again that of a landscape: a theory admitting multiple 4D vacua, classified by

the free integration constants for some of the bulk fields (see, e.g. [14]). Using these inte-

gration constants, one could hope to derive a framework where the effective cosmological

constant could change in small amounts from one background to another. But one gains

no more than that: the landscape reemerges, and one must retreat to either statistical or

anthropic arguments to select a phenomenologically viable ground state.

A different idea for recovering 4D General Relativity at large distances has been pur-

sued in the so-called brane induced gravity theory [15]. In more interesting variants of

brane-induced gravity, the extra-dimensional space has infinite volume. When the bulk

volume is infinite, the 4D graviton zero mode is not normalizable, and hence it completely

decouples. Thus 4D gravity ought to emerge from the exchange of the continuum of bulk

modes, which are all massive from the 4D viewpoint. To ensure this, [15] introduced

induced curvature terms on the brane, arguing that they will be generated by brane quan-

tum corrections anyway. If the scale M4 that normalizes them is much greater than the

bulk Planck scale, the brane kinetic terms would pull the bulk gravitons with wavelengths

shorter than a certain crossover scale rc very close to the brane, yielding the momentum

transfer due to the scattering of virtual bulk gravitons ∝ 1/p2 for the momenta p > rc
−1,

and a very small coupling of the three-point vertex ∼ 1/M4. This gives a force which scales

as 1/r2, simulating 4D behavior [15], and is nicely illustrated in the exact gravitational

shock waves of [16].

This force contains admixtures of longitudinal, helicity-0 gravitons, and sometimes also

radions. They couple gravitationally and their long range contributions to the force never

completely disappears in perturbation theory [17]. However it has been argued, for massive

gravity [18] and similarly for brane induced gravity [19], that the theory goes nonlinear at

large distances from the source, and that the nonlinearities might screen away the extra

scalar modes. On the other hand, this also indicates [20]–[23] that brane induced gravity

runs into a strong coupling regime at macroscopic distances rstrong ∼ (r2
c/M4)

1/3, requiring

very low scale UV completions, and forcing the question of whether such completions

even exist! The extra scalars may also turn into a perturbative ghost on self-accelerating

backgrounds in 5D bulks [22, 24 – 28]. This suggests that the self-accelerating backgrounds

are unstable, but the strong coupling at subhorizon scales obstruct the exploration of their

fate in perturbation theory. Still, the shock waves [16, 25] can identify energy leaks from

a self-accelerating brane into the bulk, that render the dynamics manifestly different from

a 4D one.

Similar mechanisms may also operate on higher-codimension defects [15, 29]. The
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authors of [29] have pursued ideas how UV regularizations of gravity might affect the

crossover scale and the IR spectrum of the theory, hoping to suppress the extra graviton

helicites. Subsequent discussions involved arguments as to how some regularizations may

suffer from ghosts [30], which precisely cancel the extra graviton helicities, and how to avoid

them [31, 32]. The explicit constructions are hindered by the short-distance singularities

in the core of the defect, which must be regulated before one can reliably calculate the low

energy behavior of gravity.

We feel that exploring brane induced gravity on codimension-2 brane models is par-

ticularly interesting. In this case we can find the exact background solutions that play the

role of the 4D vacua directly, thanks to the magic of gravity in 3D. It is well known from

early braneworld analysis that 3-branes in 6D need not locally curve the bulk even if they

carry tension [33]. Although this leads to flat 4D geometries for nonvanishing tensions, it

does not help with the cosmological constant problem after one compactifies the bulk to

get long range 4D gravity. This was immediately realized already in [33] to be in agree-

ment with Weinberg’s no-go theorem [1], and was discussed in more detail in [34]. Still,

many interesting properties of gravity localized on codimension-2 defects, flat or not, in

a 6D bulk, compact and not, have been since explored in [35]–[52], including exact black

holes and gravitational shock waves straddling the brane [50]. The sheer proliferation of

such configurations points to a structure as rich as the landscape of supergravity solutions,

albeit more exotic. Sketching a chart of this realm is the primary aim of the present paper,

as we now elaborate.

1.2 The landscape of brane induced gravity

We begin our foray into the landscape of brane induced gravity by exploring thin static

codimension-2 branes, which exist for sub-critical tensions λ < λc = 2πM4
6 and have a flat

4D induced metric. Because the brane induced curvature terms identically vanish, these

solutions are identical to the ones in 6D General Relativity with an empty bulk. We then

construct exact gravitational shock waves of relativistic particles on the brane, generalizing

the solutions of [50] to the framework of brane induced gravity. The shocks confirm that

brane induced gravity on singular defects remains 4D all the way to infinity [15, 29].

Yet, these solutions are pathological. Even an infinitesimal displacement of the probe

from the brane into the bulk reveals that the thin brane theory is singular, since the

gravitational field jumps from a finite value to exactly zero everywhere in the bulk [15, 29].

Mathematically, the discontinuities on thin branes can be attributed to an ill-posed exterior

boundary value problem: modelling brane sources by points on an infinite cone introduces

singularities both near and far. One turns it into a well-posed problem simply by replacing

the point sources with finite rings, and considering the combined interior and exterior

problems. Physically, this amounts to smearing the source over a finite space. We do it

by replacing the thin 3-brane by a 4-brane wrapped on a circle, by adding an axionic field

on the brane, whose vev breaks translations along the circle [43, 51]. This is similar to

the Scherk-Schwarz mechanism [53] for supersymmetry breaking and mass generation by

dimensional reduction, an important ingredient of the string landscape model-building [3].

Much like in the string landscape, the axion ‘charge’ determines the radius of the compact
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circle r0 for a given value of the tension, and we must choose it carefully to get the desired

value of r0. Alternatively, if some other dynamics were to fix r0, we need to tune the

axion charge to precisely cancel the pressure of the brane tension along the circle, because

otherwise the background could not simulate the 4D Minkowski vacuum from the get go.

The thick branes will still have a flat static geometry with an infinite bulk, but only

for tensions smaller than the critical value. When the tension exceeds the critical value,

our solutions show how the bulk compactifies and develops a naked singularity that soaks

up the brane’s gravitational field lines, just like the supercritical cosmic string in 4D [54].

These solutions look like singular teardrop compactifications analyzed by Gell-Mann and

Zwiebach in [55]. As with 4D supercritical defects [54], one expects that for supercritical

branes, as well as for the cases with a mismatch between the tension and the axion charge,

there exist nonsingular solutions which describe some curved, nonstationary backgrounds.

Examples which describe topologically inflating defects have been found recently in [56].

We next calculate the crossover scale where gravity changes from 4D, again using

the shock wave solutions, sourced by relativistic strings moving on the wrapped brane.

Below the crossover scale, the shock wave indeed approximates the 4D Aichelburg-Sexl

solution [57] down to r0, whereas at much larger distances it changes over to the 6D shock

of [58], for sub-critical branes. The physics of crossover is very intricate: it is controlled by

the deficit angle of the vacuum solution. This is because of the ‘lightning rod’ amplification

of the bulk gravitational coupling, leading to M4
6 eff = (1−b)M4

6 [50], where 1−b = 1− 2λ5r0

M4
6

measures the deficit angle of the brane. It is intuitively clear why it affects the gravitational

force: on a cone, gravitational field lines spread more slowly than on a plane, and hence

gravity must look stronger [50]. For sub-critical strings with deficit angle smaller than

2π, our exact crossover scale is qualitatively very different from the see-saw scale of [29],

yielding instead r2
c ∼ M2

4

M4
6 eff

, up to a log, where M4 is the effective 4D Planck scale found

by compactifying the wrapped 4-brane theory on the circle of radius r0.

On the other hand, in the near-critical limit the bulk compactifies to a cylinder, which

opens up into a cone only very far from the brane, at distances >∼ r0
1−b . In the cylindrical

throat gravity is in a 5D gravity regime, separating the 4D and 6D ones. Thus the crossover

scale beyond which gravity is not 4D is really the demarcation between the 4D regime and

5D gravity which lives inside the throat [59]. To see where this happens, we can use the

naive crossover formula on a codimension-1 brane, realized as a wrapped 4-brane in a 6D

flat space with a compact circle: by Gauss formulas for Planck masses M2
4 eff = M3

5 r0 and

M3
5 eff = M4

6 r0, we find exactly rc ∼
M2

4 eff

M3
5 eff

∼ M3
5

M4
6
, which is our crossover formula from the

exact shock waves, and which is the same as the see-saw scale rc ∼ M2
4

M4
6 r0

of [29]. Thus we

see precisely how the see-saw mechanism emerges.

Our analysis reveals the presence of a large topographic diversity of solutions. The

axion flux which cancels the pressure in the compact direction sets the radius of the circle

by q2 = 2λ5r
2
0. Since the 4D Planck scale is M2

4 ∼ M3
5 r0 ∼ M3

5 q√
λ5

, and, for sub-critical

branes, the crossover scale rc ∼ M3
5 q√

2λ5M4
6−2λ5q

we can find the charge q that will produce

any desired M4 for any values of M5 and λ5. But then, the crossover scale is uniquely fixed
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in terms of these parameters. The vacuum energy problem reappears in brane induced

gravity: although the brane is flat, when we fix M4, we must finely tune both the axion

charge and the tension of the brane to get rc to take some desired value on a sub-critical

brane. On the other hand, once we fix λ5, M5 and M6, and let the charge q vary, we

will find that the thickness, the effective 4D Planck scale, and, for sub-critical branes, the

crossover scale of the brane also vary, spanning a wide range of theories below the crossover

scale. The near-critical branes, where the deficit angle approaches 2π, are more interesting

since their crossover scale saturates at rc ∼ M3
5

M4
6
, which is completely independent of the

brane tension in the leading order. This is because their conical throat [59] shields them

from the asymptotic infinity. Only their effective 4D Planck mass is sensitive to the brane

tension, and changes when the tension varies and the axion charge is fixed. The charge

and the tension still need to be tuned right to get a desired value of M4, but this may be

substantially easier.

This is a signature of a landscape: low energy parameters of a theory depend on

boundary conditions, instead of being uniquely fixed by a symmetry principle. We could

also imagine a brane where q and λ5 might slowly vary along the brane, leading to regions

of 4D space with a different strength of simulated 4D gravity, but always with a flat

static 4D vacuum for sub-critical vacuum energies! Thus, we unveil a classical landscape of

codimension-2 brane induced gravity, where the brane may remain flat since the curvature

is soaked up by the deficit angle, but M4 and generically rc depend on the vacuum energy.

Including quantum mechanics in this picture requires a lot of care. An immediate,

semiclassical issue is that since the axion is a phase of some complex 5D scalar field, its

charge is quantized in the units of a new UV mass scale µ. The quantization law, q = µ3/2n,

where n is an integer winding number, yields M2
4 ∼ M3

5µ3/2
√

λ5
n, so that for a given set of

dimensional parameters we must choose the right winding number. The value of M4 changes

discretely with it. Similarly, for sub-critical branes, the crossover scale can only change

in discrete jumps on static backgrounds. Thus the static configurations will only exist at

discrete locations of the landscape, most of which is covered by nonstationary solutions, like

in the string landscape with a discretuum of vacua [3]. Finding the nonstationary solutions

is outside of the scope of this work; we hope to return to it elsewhere. Nevertheless as long

as gravity is treated classically and field theory is consistently cut off at some scale in the

UV, this can be done in principle, showing that the classical landscape which we glimpse

at can be extended semiclassically. However, there remains the looming question about

UV completions of brane induced gravity models, and their embeddings into the theories

of quantum gravity [15, 60 – 62]. We will have nothing new on this to add here, taking a

more pedestrian approach of simply charting out the (semi)classical countenance of what

the quantum landscape might be.

The shock wave solutions have taught us that at distances between r0 and rc, the theory

contains 4D General Relativity. To see what else is there, we develop, in painstaking

detail, linearized perturbation theory about a wrapped brane. For sub-critical tension

the scalars are strongly coupled essentially exactly at the crossover scale rc, which is the

Vainshtein scale [18] of the vacuum itself. This happens because the scalar gravitons
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probe the asymmetric vacuum energy distribution, set up by the background axion flux,

which triggers brane bending. However in the near-critical limit linearized perturbation

theory around the vacuum remains under control below the crossover scale. Solving for

the linearized gravitational field of a static uniform ring of mass on the brane, we find that

below the crossover scale the theory contains helicity-0 and radion-like scalars in addition

to the helicity-2 modes. The radion modes decouple but the helicity-0 modes remain active

at the linearized level. Thus the linearized theory around near-critical vacua approximates

a Brans-Dicke gravity with ω = 0. This would disagree with the classic tests of General

Relativity [17], but perhaps non-linearities or dynamics on vacua of more complex structure

could come to the rescue. We however find that rings of brane matter built of the lightest

KK states on the wrapped brane do not entice any fast instabilities in the leading order

of perturbation theory. While we suspect that fast instabilities might remain absent in

perturbation theory beyond linear order, we have not proven it, and it remains a question

for future studies.

The paper is organized as follows: we begin with a lightning review of thin codimension-

2 flat branes and their short distance singularities, as revealed by shock waves, in section

2. We then construct the regulated backgrounds, with a 4-brane wrapped on a circle, in

section 3. We also discuss how critical and supercritical branes compactify the bulk, the

latter inducing a naked singularity far away. We derive regulated shock wave solutions in

section 4, to explore the long range properties of gravity and compute the crossover scale.

In section 5 we set up linear perturbation theory, and give the linearized solution of a static

ring of mass on the 4-brane. We end with conclusions.

2. Tensional thin branes on bulk cones

2.1 Vacua

The field equations describing a 3-brane in an empty 6D bulk in brane induced gravity

are [15, 29], in a brane fixed Gaussian-normal gauge,

M4
6 G6

A
B + M2

4 G4
µ

ν δA
µδν

B δ(2)(~y) = T µ
ν δA

µδν
B δ(2)(~y) . (2.1)

Our conventions are that the indices A,B, . . . count all spacetime dimensions, while µ, ν, . . .

run over the brane worldvolume. The δ-function is the tensor δ(2)(~y) =
√

g4√
g6

Πδ(yi), given by

the normalization of the usual tensor density by the metric determinant of the extra space,

coordinatized by (y1, y2) (we will use xµ for the coordinates along the brane worldvolume).

As in [15, 29] we take the stress-energy tensor T µ
ν to be localized on the brane, separating

the tension λ from the matter sources by T µ
ν = −λδµ

ν + τµ
ν .

The vacua of this theory are maximally symmetric solutions with τµ
ν = 0. Substituting

this in (2.1), imposing a flat brane gµν = ηµν and tracing over, we find R2 = 2λ
M4

6
δ(2)(~y),

where R2 is the curvature in the spatial dimensions transverse to the brane. The solution

is a conical space [33], which can be seen most simply as follow. Since any metric in

two dimensions is conformally flat, we can write ds2
2 = e−ϑd~y2. Then by conformal

flatness of the metric, R2 = eϑ~∇2
yϑ, and recalling the Euclidean 2D Green’s function

– 6 –
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thin brane

outside
cone

Figure 1: 2D conical bulk geometry of a thin brane vacuum.

ln(|~y|/ℓ), which obeys ~∇2
y ln(|~y|/ℓ) = 2πΠδ(yi), we see that to get the solution we can

set ϑ = 2b ln(|~y|/ℓ) to find R2 = 4πbe2b ln(|~y|/ℓ)Πδ(yi). We next compare this to R2 =
2λ
M4

6
δ(2)(~y) = 2λ

M4
6
e2b ln(|~y|/ℓ)Πδ(yi) from above, from which we finally obtain

b =
λ

2πM4
6

. (2.2)

The arbitrary length scale ℓ, needed for dimensional reasons, completely drops out of these

equations. Then substituting the solution for ϑ, going to spherical polar coordinates and

changing the radial coordinate to ρ = 1
1−bℓ

b|~y|1−b, we get

ds2
2 = dρ2 + (1 − b)2ρ2dφ2 . (2.3)

Since the range of the angular variable φ is 2π, 1 − b is the deficit angle induced by the

tension, as per eq. (2.2). The full 6D vacuum solution is

ds2
6 = ηµνdxµdxν + dρ2 + (1 − b)2ρ2dφ2 . (2.4)

This is identical to the thin 3-brane in a flat bulk found in models with large extra di-

mensions [33] because the induced curvature identically vanishes on flat branes. The bulk

geometry is a cone, given in figure (1). It is well known, however, that for backgrounds with

matter sources on a thin brane in higher-dimensional gravity the short distance structure

of the geometry near the brane is more involved [46]–[48, 50, 51]. In general, the length

scale ℓ does not drop out but needs to be promoted into a UV regulator, smoothing the tip

of the cone in figure (1). As we will see below this becomes even more important in brane

induced gravity.

Clearly, we see that the solution (2.4) is not well defined at b = 1, corresponding to the

critical value of the tension λcr = 2πM4
6 . While the metric (2.4) makes sense, as it stands,

– 7 –
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for b > 1, it is not clear what it represents since we can’t smoothly deform it to relate it to

sub-critical cases. Hence in the critical limit, and beyond it, we cannot tell what happens

to the brane until we sort out how to match the brane’s core to the exterior, in precisely

the same manner as for the critical and super-critical strings [54].

2.2 Shocks on thin branes

A simple way to probe the nature of gravity, as argued in [16, 50], once a vacuum solution

is known, is to shock it. By this we mean, put a relativistic particle on a background,

use its stress energy tensor as a source, and solve the equations for its gravitational field.

Because of Lorentz boosts, the field becomes completely confined to the space transverse

to the direction of motion, and hence the field equations, however formidable they may be,

will linearize. A straightforward technique to solve them is to use the cutting and pasting

technique of Dray and ’t Hooft [65, 66], which works in our case since the sub-critical

vacuum metric eq. (2.4), with b < 1, is locally flat. So: the shocked metric will be

ds6
2 = 4dudv − 4δ(u)f(~x⊥, ~y)du2 + d~x2

⊥ + dρ2 + (1 − b)2ρ2dφ2 , (2.5)

where ~x⊥ coordinatize the two directions along the brane transverse to the particle that

moves along the null geodesic u = 0, and ~y are the coordinates on the cone. The function

f is the shock wave profile that we need to solve for. Then, using eq. (2.5) as an ansatz,

we substitute it into the field equations eq. (2.1), with the relativistic stress energy tensor

τµ
ν = 2p√

g4
g4uvδ(u)δ(2)(~x⊥)δµ

vδ
u

ν of the source with 4-momentum pµ = (p, 0, 0, p) included,

and determine the equation controlling the shock wave profile f .

Since for relativistic particles τµ
µ = 0, we still have R6 = 2λ

M4
6
δ(2)(~y) and R4 = 0

regardless of the source. We substitute this in the field equations along the brane world-

volume,

M4
6 R6

µ
ν + M2

4 R4
µ

ν δ(2)(~y) = τµ
ν δ(2)(~y) . (2.6)

The field equations in the bulk, R6 = 2λ
M4

6
δ(2)(~y), are trivially solved by eq. (2.5) and so

all the new information is completely contained in (2.6). The solution of these equations

will be consistent, since one can easily verify that ∇µτµ
ν = 0. Now, the only nontrivial

components of the Ricci tensors for the metric (2.5) are

R6
v
u = δ(u)∇4

2f ,

R4
v
u = δ(u)∇2

2f , (2.7)

where ∇4
2 is the full transverse Laplacian, and ∇2

2 its restriction on the 2D transverse

plane on the brane, coordinatized by ~x⊥. Substituting this and the formula for τµ
ν in

eq. (2.6) we finally obtain the field equation for f :

∇4
2f +

M2
4

M4
6

∇2
2f δ(2)(~y) =

2p

M4
6

δ(2)(~x⊥) δ(2)(~y) . (2.8)

All other equations in (2.6) are trivially satisfied on (2.5). Thus we see that the problem

of determining the configuration which solves (modified) gravity equations for relativistic
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sources, as before, maps onto a much simpler problem of solving a (modified) Poisson

equation for a static charge [65]–[66, 16]. This illustrates the power of shock therapy as

a diagnostic method. Once we have the solution of eq. (2.8), we can compare it to the

Aichelburg-Sexl solution [57] to see if, and how, the theory mimics 4D General Relativity.

Let us now solve eq. (2.8), at least formally. Fourier transforming in the brane trans-

verse space

δ2(~x⊥) =
1

(2π)2

∫

d2~kei~k·~x⊥ , f =
1

(2π)2

∫

d2~k ϕk(~y) ei~k·~x⊥ , (2.9)

using ∇4
2 = ∇~y

2 + ∇2
2, where the operator ∇~y

2 is the Laplacian on the 2D cone, and

replacing δ(2)(~y) = 1
2π(1−b)ρδ(ρ) by using the axial symmetry of (2.5) and the null source

τµ
ν , after a little algebra we obtain

(∇2
~y − k2)ϕk =

1

2π(1 − b)M4
6

(2p + M2
4 k2ϕk)

δ(ρ)

ρ
, (2.10)

which is very similar to the field equation of a bulk scalar with kinetic terms induced on the

brane [15]. Note that the bulk coupling M−4
6 has been replaced by the effective coupling

[(1 − b)M4
6 ]−1 which is stronger on the cone because of its deficit angle, representing the

‘lightning rod’ amplification effect pointed out in [50]. At any rate, we can now use the same

tricks to solve it as [15]. Ignoring the angular variable by axial symmetry, and substituting

ϕk(ρ) = D(k, ρ)F (k) where D obeys the Helmholtz equation

(∇2
~y − k2)D =

2p

2π(1 − b)M4
6

δ(ρ)

ρ
, (2.11)

we then determine F such that the ansatz ϕk = DF correctly solves eq. (2.9). This yields

F =
(

1 − M2
4

2p k2D(k, 0)
)−1

, and therefore the momentum space field ϕk is

ϕk =
D(k, ρ)

1 − M2
4

2p k2D(k, 0)
. (2.12)

The Helmholtz equation is defined on the full 2D cone, with the source residing exactly on

its vertex, and so we can write its solution D in terms of the modified Bessel function K0,

which vanishes at infinity and hence describes properly gravity localized to the brane as

D(k, ρ) = − p

π(1 − b)M4
6

K0(kρ) . (2.13)

where we have explicitly used the fact that the other modified Bessel function I0 is equal

to unity on the brane at ρ = 0, while it diverges at infinity. We point it out since it will

arise naturally later on, although here it plays no role yet. Then, substituting this in ϕk

and Fourier transforming it back to the transverse configuration space along the brane, and

integrating over the angular bulk variable in the usual way1 we finally find the solution for

1We use f = 1
(2π)2

R

d2~kϕk ei~k·~x⊥ and integrate over φ to get f = 1
2π

R ∞

0
dk k ϕk J0(k|~x⊥|), as in any

cylindrically symmetric problem in potential theory.
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the shock wave profile on a thin 3-brane:

f = − p

2π2(1 − b)M4
6

∫ ∞

0
dk

kK0(kρ)J0(k|~x⊥|)
1 +

M2
4

π(1−b)M4
6
k2K0(0)

. (2.14)

This solution is very interesting - because it is pathological. Its pathologies stem from

the fact that K0 diverges in the core of the brane. Indeed, K0(ǫ) ∼ − ln(ǫ) → ∞ as ǫ → 0.

However, along the brane, at ρ = 0, the divergence precisely cancels between the numerator

and the denominator in eq. (2.14). In this case, we find

f = − p

2πM2
4

∫ ∞

0
dk

J0(k|~x⊥|)
k

=
p

πM2
4

ln

( |~x⊥|
ℓ

)

, (2.15)

which is exactly the 4D Aichelburg-Sexl solution - at all distances along the 3-brane! This

result would be incredibly interesting, because it occurs despite the infinite bulk space

surrounding it, that could be explored by the graviton multiplet. This looks like a very

efficient mechanism to hide extra dimensions from the gravitational exploration. However,

if we move off the brane by an even infinitesimal amount, to ρ = ǫ 6= 0, from (2.14) we

find that the divergence of the denominator forces the shock wave profile immediately to

zero. Thus the confinement of gravity to the brane is perfect - but it happens because

the Bessel function diverges in the core, and is clearly a UV sensitive answer, as indeed

noted in [15, 29]. If we consider a physically more realistic brane of finite thickness, the

confinement may be far less than perfect, leading to the reopening of extra dimensions

to gravity at some finite distance from the source [29]. Therefore, before we draw any

conclusions about brane induced gravity in codimension≥ 2, we first must regulate the

short distance singularities inside the brane.

Our shock wave example points us to a very simple way how to regulate. The discon-

tinuity of the solution is due to the divergence in the function K0(ρ) at ρ = 0. Mathe-

matically, the divergence of K0 on the source is the familiar pathology from an ill-posed

problem for an elliptic Helmholtz equation for a pointlike source, which does not have a

regular exterior solution in 2D. A well known prescription for regulating this problem is

to replace the pointlike source by a ring-like one. We can then split the problem into a

combination of interior and exterior problems, which have well behaved solutions for ring

sources of a finite size. Since our pointlike source is really a particle on a codimension-2

brane, a natural way to replace it by a ring-like source is to consider a loop of string moving

on a cylinder. If we then want to derive the background cylinder from a covariant action,

the easiest way to do it is to take a 4-brane and wrap it around a circle of finite size. Such

tricks were used earlier in [43, 51] and we employ it next.

3. Wrapped branes and truncated cones

3.1 Making vacua

We wish to replace the thin brane vacuum (2.4) by one where the brane has a core of

finite thickness, but its metric remains the same as (2.4) outside of the brane core. In this
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case the thick brane vacuum will retain some of the attractive features of the thin 3-brane,

namely 4D flatness and the presence of 4D General Relativity, for the sub-critical case.

Furthermore, we will find a simple model which will enable us to see what goes on as the

tension approaches and exceeds the critical limit. Now, the reason why the metric eq. (2.4)

solved the field equations (2.1) was that the stress energy tensor of a tensional 3-brane

has the form T µ
ν = −λδ(2)(~y) along the brane and vanished away from it. In component

notation, this looks like TA
B = −λδ(2)(~y) diag(1, 1, 1, 1, 0, 0). A very simple model of a

3-brane with a finite core is a cylinder: a 4-brane wrapped on a circle [43, 51]. However,

when the 4-brane has nonzero tension, with the vacuum action Svacuum = −
∫

d5x
√

g5λ5,

its stress energy tensor will be TA
B = −λ5δ(ρ− r0) diag(1, 1, 1, 1, 1, 0), where we wound it

around the circle of radius r0, with ρ along the normal to the brane. Thus, to wrap the

4-brane into a cylinder, we must cancel the pressure ∝ λ5 in the compact direction.

A simple way to do it is to put an axion-like field Σ on the 4-brane, with a vacuum

action

Svacuum = −
∫

d5x
√

g5(λ5 +
1

2
gab∂aΣ∂bΣ) , (3.1)

and look for solutions where Σ breaks the translational invariance in the compact direction,

but so that its stress energy tensor remains translationally symmetric. This is precisely

the method of Scherk and Schwarz [53] for dimensionally reducing supergravities to get

massive lower dimensional theories. The stress energy tensor obtained by varying eq. (3.1)

along the 4-brane is

T a
b = −λ5δ

a
b + ∂aΣ∂bΣ − 1

2
δa

bg
cd∂cΣ∂dΣ , (3.2)

where lower case latin indices a, b, . . . run over 4-brane worldvolume values 0, 1, . . . , 4.

Taking the fourth coordinate to be the angle on the compact circle φ and substituting the

Scherk-Schwarz ansatz Σ = qφ we choose q to precisely cancel T φ
φ. This requires

λ5 =
1

2
q2gφφ , (3.3)

where gφφ = 1
r2
0

is the inverse radius squared of the compact dimensions. Then the remain-

ing components of the 4-brane stress energy become precisely T µ
ν = −2λ5δ

µ
ν . Thus the

brane source now reads TA
B = −2λ5δ(ρ − r0) diag(1, 1, 1, 1, 0, 0). The tensor structure is

precisely the same as in the stress energy tensor of a thin 3-brane. Now, since the thin

brane is axially symmetric from the bulk viewpoint, we can rewrite the scalar δ-function

in polar coordinates as δ(2)(~y) = 1
2πρδ(ρ). By inspection, we see that if we shift the ar-

gument of the remaining radial δ-function to ρ − r0, it becomes δ
(2)
thick(~y) = 1

2πr0
δ(ρ − r0),

and so to model the thick brane by a wrapped 4-brane, we need to identify λδ
(2)
thick(~y) with

2λ5δ(ρ − r0). This yields

λ = 4πr0λ5 , (3.4)

relating the 5D and the effective 4D vacuum energies. The effective 4D vacuum energy λ

contains the contributions from the classical axion field Σ, doubling up its value, because

of the cancellation condition of eq. (3.3). This is equivalent to the effective vacuum energy
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contributions in the string landscape [3], which is also comprised of the contributions from

quantum fields (here, λ5) and classical fluxes (here ∝ q2). In the landscape, these contri-

butions need to be finely adjusted to yield a 4D Minkowski vacuum. Here, the situation is

similar: because this stress energy is completely localized on a codimension-1 cylindrical

surface of finite radius, one expects that the solution representing this configuration should

be obtained from patching locally flat 6D Minkowski spaces inside and outside of the cylin-

der. The exterior should have a deficit angle by the construction of the thick brane stress

energy, which shows that our 4-brane source looks precisely like the thick 3-brane.

Indeed, the field equations for a 4-brane in a 6D bulk which include brane localized

gravity terms are [15, 29], in Gaussian-normal gauge, and with the 4-brane residing at

ρ = r0,

M4
6 G6

A
B + M3

5 G5
a
bδ

A
aδ

b
Bδ(ρ − r0) = T a

bδ
A

aδ
b
Bδ(ρ − r0) , (3.5)

which we apply to our cylindrical brane vacuum, imposing that the stress energy tensor is

covariantly conserved, that requires ∂a∂aΣ = 0. It is easy to check that by axial symmetry

the ansatz Σ = qφ trivially solves the latter equation. Then, the tensor structure of the

source, TA
B = −2λ5δ(ρ − r0) diag(1, 1, 1, 1, 0, 0), guarantees that the flat 4D metric is

a solution, if the tension is again off-loaded into the bulk, like in the thin 3-brane case.

Tracing the field equations (3.5), and using (3.3) we find that the condition for this is that

the metric in the remaining two dimensions, coordinatized by the angular direction along

the brane and the radial distance away from it has curvature

R2 =
4λ5

M4
6

δ(ρ − r0) . (3.6)

Thus, by the arguments identical to those we invoked in the construction of the thin 3-

brane solutions, we can choose the coordinates where the 2D metric is ds2
2 = e−ϑd~z2, where

however the brane now resides at r0 = |~z0| around the origin. Substituting in (3.6), we

find R2 = e−ϑ~∇2
2ϑ. Comparing to (3.6) and using the fact that ~∇2

2[Θ(r − r0) ln(r/r0)] =

δ(r − r0)/r, we infer that

ϑ = 2bΘ(r − r0) ln(
r

r0
) (3.7)

where Θ(x) is the Heaviside step function, Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0,

and b is given precisely by combining eqs. (2.2) and (3.4),

b =
2λ5r0

M4
6

. (3.8)

The solution is given by ds6
2 = ηµνdxµdxν + e−2bΘ(r−r0) ln(r/r0)(dr2 + r2dφ2), in polar

coordinates. After defining the new radial coordinate ρ by dρ/dr = (r0/r)
bΘ(r−r0), such

that

ρ =
r

1 − bΘ(r − r0)

(

r0

r

)bΘ(r−r0)

− br0Θ(r − r0)

1 − bΘ(r − r0)
, (3.9)

and Θ(r − r0) = Θ(ρ − r0), we can rewrite the metric as

ds6
2 = ηµνdxµdxν + dρ2 +

[

(1 − bΘ(ρ − r0))ρ + br0Θ(ρ − r0)

]2

dφ2 . (3.10)
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Figure 2: 2D bulk geometry of the resolved brane.

For ρ < r0 the 2D part of the metric is ds2
2 = dρ2 + ρ2dφ2, i.e. a flat disk, while for ρ > r0

it becomes ds2
2 = dρ2 + ((1 − b)ρ + b r0)

2dφ2 = dρ2 + (1 − b)2(ρ + b
1−b r0)

2dφ2, precisely

the metric on a cone, which we see by comparing it to the thin 3-brane metric from the

previous section. Thus the combined solution represents a truncated cone, with a flat mesa

of radius r0 on top, as depicted in figure (2). The geometry of the brane is 4D Minkowski

× circle.

Looking at eq. (3.10) for ρ > r0 we see that the critical string tension, where the deficit

angle becomes 2π, is again given by b = 1, which now corresponds to the tension

λ5 cr =
M4

6

2r0
. (3.11)

Comparing to the relation between the 5D tension λ5 and the effective 4D tension λ, given

by eq. (3.4) we find that the critical value of the effective 4D tension is, not surprisingly,

λcr = 2πM4
6 . We can now see what happens as λ → λcr and beyond. Since we are holding

the brane core fixed, using its own internal dynamics, all we need to do is analyze the

region ρ > r0 of eq. (3.10). When b = 1, the metric outside of the brane changes to

ds6
2 = ηµνdxµdxν + dρ2 + r2

0dφ2 , (3.12)

which describes a cylinder M4 × R × S1, where the radius of S1 is the same as the brane

radius. Now, when b = 1 − ǫ, it’s easy to see that the bulk cone looks like a sliver. In this

limit, the exterior bulk metric is approximately ds6
2 = ηµνdxµdxν + dρ2 + (ǫ(ρ − r0) +

r0)
2 dφ2. This looks like the metric on a cylinder for r0 ≤ ρ <∼ r0/ǫ, because the variation

of the radius of the sliver, due to the change of radial distance ρ, is very small compared
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Figure 3: 2D bulk geometry of the near-critical resolved 3-brane.

to the radius of the brane r0. Near-critical branes reside inside deep bulk throats that only

asymptotically open into conical geometries [59], see Fig (3).

For supercritical branes, b > 1, the exterior metric is just

ds6
2 = ηµνdxµdxν + dρ2 + (b − 1)2(ρ − b

b − 1
r0)

2dφ2 , (3.13)

which describes a bulk geometry that near ρ = r0 looks like a flat disk. However now the

metric has a singularity at ρ = b
b−1r0 > r0, where the geometry tapers off to a conical

spike. Thus when b > 1 the bulk spontaneously compactifies on a 2D teardrop, precisely

of the shape discussed by [55]. Hence static flat branes in an infinite bulk will only occur

for sub-critical values of the tension. In light of the discussions of [54], one expects that

the supercritical brane solutions without bulk singularities exist, but that they describe

nonstationary backgrounds. Examples describing topologically inflating domain walls on

codimension-1 brane induced gravity models have been discussed recently in [56].

Note, that our construction is completely covariant from the bulk point of view, since

we can define the regulator by a variational principle, from a well defined 4-brane action.

Therefore we can explicitly check the properties of brane localized gravity, and calculate

the crossover scale inferred in [29] exactly.

3.2 Stress energy sources on thick branes

Having constructed the thick brane vacua, we can turn to the description of matter sources

that reside on branes. For simplicity we take the matter to be localized on the 4-brane,

and described by a matter sector action

Smatter = −
∫

d5x
√

g5 Lmatter , (3.14)

where the matter couples to the induced metric on the 4-brane g5 ab. Since one of the

dimensions along the brane is a circle of radius r0, and we are interested in the behavior

of the theory at length scales r ≫ r0, we dimensionally reduce the brane-localized sector

on this direction, representing all brane fields by the standard Fourier expansion

ΦN (xµ, r0φ) =
∞
∑

n=−∞
ΦN ,n(xµ) einφ , (3.15)

– 14 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
5

where N represents the quantum numbers of any particular representation on the brane.

The Fourier coefficients then give rise to the 4D KK towers of fields, with masses M2 =

m2+n2/r2
0, where m are the explicit mass terms from (3.14), and the mass gap is 1/r0. This

expansion also applies to the brane induced metric and its curvature. Thus, at distances

r ≫ r0 we can always model the angular dependence of any configuration as a small,

Yukawa-suppressed correction from a KK momentum mode stretching along the compact

circle.

When we consider the classical limit of the theory, to define the gravitational sources

that describe lumps of matter living on the brane, we can model them as loops of string

along the cylinder. At distances r ≫ r0 these will look just like point particles on a thin

3-brane. To determine the stress energy tensors of such objects, that source their gravity,

we replace (3.14) by a Nambu-Goto action for a string,

Smatter = −µ

∫

d2σ
√

γ , (3.16)

where µ is the mass per unit length of the string, σα are its two worldsheet coordinates,

which we will gauge fix to be t and r0φ, and γαβ is the induced worldsheet metric. We then

vary this action with respect to the metric of the target space on which the string moves,

in this case the metric of the background thick brane. We then use the standard definition

of the stress energy tensor τab, given by the functional derivative equation δSmatter =
1
2

∫

d5x
√

g5δgabτ
ab, to read off the stress energy tensor of the loop. Following the standard

tricks for pointlike sources, we first rewrite (3.16) as

Sm = −µ

∫

d2σd5x
√

γ δ(5)(xM − xM (σ)) , (3.17)

where the δ-function puts the string on its shell (i.e. enforces its equation of motion). Using

γαβ = gab
∂xa

∂σα
∂xb

∂σβ and δ
√

γ = 1
2

√
γγαβδγαβ , we find

τab = −µ

∫

d2σ
1√
g5

δ(5)(xc − xc(σ))γαβ ∂xa

∂σα

∂xb

∂σβ
. (3.18)

Similar variation with respect to the target space coordinates of the string leads to the

string equation of motion, which is ∇α(gab∇αxb) = 0, and is in fact completely equivalent

to the string stress energy conservation, ∇aτ
ab = 0.

With the gauge choice σ0 = x0 and σ1 = r0φ, and using the vacuum solution (3.10)

as the target space, we get γαβ = ηαβ, and hence the loop of string stress energy tensor

becomes

τab = −µ

∫

d2σδ(5)(xc − xc(σ))ηαβ ∂xa

∂σα

∂xb

∂σβ
. (3.19)

While this expression is only valid on the locally flat target (3.10), as we will only be

interested in the linearized gravitational fields (which however are exact for relativistic

particles!) this is all we shall need. If we consider static sources, the string representing

only the lightest modes must be translationally invariant in the compact direction, because

by the discussion above any inhomogeneities along the string can be viewed as heavy
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KK states at distances r ≫ r0. For such axially symmetric sources, only two components

of (3.19) survive: τ00 = µδ(3)(~x), and τφφ = − µ
r0

δ(3)(~x), which we can write more compactly

as

τa
b = −µ δ(3)(~x) diag(1, 0, 0, 0, 1) . (3.20)

The parameter µ is the total rest mass per unit length of the configuration. To get the

stress energy tensor of a relativistic string, that moves along the cylindrical brane at the

speed of light, and has vanishing rest mass, we can simply boost (3.20) along the direction

of motion x‖, go to the light cone coordinates x‖ = v + u, t = v − u and take the limit of

infinite boost parameter while sending µ → 0 [65]. Since the momentum of the string p

is the length of the string 2πr0 multiplied by the finite limit of µ cosh β as β diverges, for

sources composed of the lightest modes as in (3.20) this yields, thanks to the properties of

the vacuum (3.10),

τµ
ν =

2p

2πr0
√

g4
g4uvδ(u)δ(2)(~x⊥)δµ

vδ
u

ν , τφ
φ = 0 , (3.21)

which is identical in form to the relativistic stress energy on thin branes, used in the

previous section.

To find the gravitational fields of these sources, we need to solve the brane induced

gravity field equations (3.5), in Gaussian-normal gauge with the brane at y = ρ − r0 = 0

and with T a
b, which is given by the sum of the vacuum contribution in eq. (3.2) and τa

b

as given in (3.20) or (3.21), on the right-hand side. It will turn out to be convenient to

rewrite these equations as the conditions on the Ricci tensor, which after tracing over the

indices and rearranging the scalar contributions, become

M4
6 R6

A
B =

[(

T a
b−M3

5 (R5
a
b−

1

2
δa

bR5)

)

δA
aδ

b
B−1

4
δA

B(T a
a+

3

2
M3

5 R5)

]

δ(ρ−r0) . (3.22)

We first consider the relativistic sources obeying (3.21) and find the generalization of the

shock wave solution (2.5), (2.14) on thick branes.

4. Shocking crossover physics

4.1 Setting up the shock wave

As before, we determine the shock wave solution by introducing a discontinuity in the

metric of eq. (3.10) according to the prescription of [65, 16], and demanding that the wave

profile solves eq. (3.22) with (3.2) and (3.21) as sources. We are working with sub-critical

branes, b < 1, which admit static flat vacua. We can still, however, consider the limit

b → 1. Using the null coordinates u, v we require that the source moves along u = 0, and

that the wave profile explores all the transverse dimensions available to gravity. By axial

symmetry of the source, however, we only need to look at the profiles f(~x⊥, ρ)δ(u) that

depend on the transverse coordinates along the brane ~x⊥ and the transverse distance ρ

orthogonal to the brane. Thus we seek the shock wave metric in the form

ds6
2 = 4dudv − 4δ(u)fdu2 + d~x2

⊥ + dρ2 +

[

(1− bΘ(ρ − r0))ρ + b r0Θ(ρ− r0)

]2

dφ2 . (4.1)
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Now, we substitute the sum of eqs. (3.2) and (3.21) along with the condition (3.3) in

eq. (3.22) and trace over the indices. We note that the stress energy of a relativistic

particle (3.21) is traceless, reflecting that the source is scale-free. We can then easily check

that by the form of the shock wave metric (4.1) the trace of the 6D Ricci tensor picks

up contributions only from the ρ-φ part of the metric, R6 = R2, leading to an equation

identical to eq. (3.6). Thus as before this equation is trivially satisfied by eq. (4.1), with

the deficit angle parameter defined in (3.8), and so are all the tensor equations on the

truncated cone ρ-φ.

Among the remaining tensor equations of (3.22), the only one which contains nontrivial

information, as before, is ∝ R6
v
u. Indeed, eqs. (3.22) on the background (4.1) reduce to

M4
6 R6

µ
ν + M3

5 R5
µ

ν δ(ρ − r0) = τµ
ν δ(ρ − r0) , (4.2)

and the only components of the Ricci tensors which depends on the shock wave profile are

R6
v
u = δ(u)∇4

2f ,

R5
v
u = δ(u)∇2

2f , (4.3)

where we are explicitly using axial symmetry in the latter term when we write the Laplacian

in only the two transverse spatial coordinates ~x⊥. Substituting this and (3.21) in eq. (4.2),

after a straightforward algebra we finally get

∇4
2f +

M3
5

M4
6

∇2
2f δ(ρ − r0) =

2p

2πr0M4
6

δ2(~x⊥) δ(ρ − r0) . (4.4)

This equation is almost identical to eq. (2.8) governing the shock wave profile on a thin

3-brane. The main difference is that the δ-function is shifted from the origin and smeared

over a circle ρ = r0, and that the Laplacian ∇4
2 is defined on the truncated cone (3.10),

such that for axially symmetric shocks, ∇4
2f = ∇~x⊥

2f + f ′′ + 1−bΘ(ρ−r0)
(1−bΘ(ρ−r0))ρ+br0Θ(ρ−r0)f

′,
where the prime denotes the ρ-derivative. The latter term contains a jump across the

4-brane.

4.2 Solving for the shock wave profile

To solve (4.4), we again Fourier transform in the brane transverse space, using eq. (2.9).

This yields

(∇2
~y − k2)ϕk =

(

2p

2πr0M4
6

+
M3

5

M4
6

k2ϕk

)

δ(ρ − r0) . (4.5)

In contrast to eq. (2.8) here we have a single δ-function. Of course, this is because this

time the brane is codimension-1. Hence we can use the standard methods for finding bulk

field wave functions in the codimension-1 brane setups: we solve eq. (4.5) inside (−) and

outside (+) the brane, and then use the boundary conditions, which are the continuity of

ϕk, the jump of ϕ′
k as prescribed by Gaussian pillbox integration of (4.5) around the brane,
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and the regularity of the solution in the center of (3.10) and at infinity:

ϕ−
k ( 0 ) = 0 ,

ϕ+
k (∞) = 0 ,

ϕ+
k (r0) = ϕ−

k (r0) ,

ϕ+
k
′(r0) − ϕ−

k
′(r0) =

(

2p

2πr0M
4
6

+
M3

5

M4
6

k2ϕk(r0)

)

. (4.6)

Away from the brane the differential equation (4.5) gives

ϕk
′′ +

1

ρ + br0Θ(ρ−r0)
1−bΘ(ρ−r0)

ϕk
′ − k2ϕk = 0 , (4.7)

with Bessel functions I0

(

k(ρ+ br0Θ(ρ−r0)
1−bΘ(ρ−r0))

)

, K0

(

k(ρ+ br0Θ(ρ−r0)
1−bΘ(ρ−r0))

)

as solutions. The first

two of the boundary conditions in eq. (4.6) then pick ϕ−
k ∼ I0, ϕ+

k ∼ K0, and the third

condition sets ϕ−
k = AI0

(

kρ)K0

(

k r0
1−b

)

and ϕ+
k = AI0

(

kr0)K0

(

k(ρ + br0
1−b)

)

. Finally the

last of (4.6) fixes the coefficient A, yielding

A = − 2p

2πr0

[

M4
6 k

(

I0(kr0)K1(k
r0

1−b ) + I1(kr0)K0(k
r0

1−b)
)

+ M3
5 k2I0(kr0)K0(k

r0
1−b)

] ,

(4.8)

where we have used the recursion formulas for modified Bessel functions ∂zI0(z) = I1(z)

and ∂zK0(z) = −K1(z). Substituting this and the form of the solutions ϕk back in the

Fourier transform equations (2.9), and again using the axial symmetry in the ~x⊥ plane to

integrate over the transverse spatial angle, yielding f = 1
2π

∫ ∞
0 dk kϕkJ0(k|~x⊥|), we finally

obtain the expression for the shock wave profile on the truncated cone:

f(~x⊥, ρ) = (4.9)

− p

2π2r0

∫ ∞

0
dk

I0(kρ<)K0(kρ>)J0(k|~x⊥|)
M4

6

(

I0(kr0)K1(k
r0

1−b) + I1(kr0)K0(k
r0

1−b )
)

+ M3
5 kI0(kr0)K0(k

r0
1−b)

,

where

I0(kρ<)K0(kρ>) =







I0

(

kρ
)

K0

(

k r0
1−b

)

, ρ ≤ r0 ;

I0

(

kr0

)

K0

(

k(ρ + br0
1−b )

)

, ρ ≥ r0 .
(4.10)

This solution is clearly not divergent away from the brane, unlike (2.8), as long as r0 > 0.

Indeed, along the brane, ρ = r0, it reduces to

f(~x⊥, r0) = (4.11)

− p

2π2r0

∫ ∞

0
dk

I0(kr0)K0(k
r0

1−b)J0(k|~x⊥|)
M4

6

(

I0(kr0)K1(k
r0

1−b) + I1(kr0)K0(k
r0

1−b)
)

+ M3
5 kI0(kr0)K0(k

r0
1−b )

,

where all the individual contributions remain finite.
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4.3 Crossover physics

Now we turn to the physics of the solution (4.9)–(4.11). It is subtle, controlled by the

deficit angle of the background (3.10). Let us look at the field along the brane, (4.11).

The shock wave profile in (4.11) is dominated by the modes with the momenta k ∼ 1/|~x⊥|,
due to the oscillatory nature of J0. The contributions of the modes with momenta k far

from 1/|~x⊥| will interfere destructively. At transverse distances much larger than the size

of the compact dimension, |~x⊥| ≫ r0, we need to focus on the momenta for which kr0 ≪ 1.

Thus we can always replace the terms ∝ In(kr0) by their small argument expansion. For

sub-critical branes, 1− b ∼ O(1), and we can likewise replace any Kn(k r0
1−b ) by their small

argument expansion too. However, in the near-critical limit the deficit angle approaches

2π and so |1 − b| ≪ 1. Hence the argument of K0(k
r0

1−b) may be very large even when

kr0 ≪ 1. Thus we must consider the near-critical branes very carefully.

We start with sub-critical branes where kr0 ≪ 1−b, and we can approximate all Bessel

functions by their small argument form. Using Iν(z) → 1
Γ(ν+1) (

z
2 )ν , Kν(z) → Γ(ν)

2 (2
z )ν for

ν > 0 and K0(z) → ln(2/z), the shock along the brane then becomes

f(~x⊥, r0) ≃ − p

2π2M4
6

∫ ∞

0
dk k

ln
[

2(1−b)
kr0

]

J0(k|~x⊥|)

(1 − b) +
M3

5 r0

M4
6

k2 ln
[

2(1−b)
kr0

] . (4.12)

If k ∼ 1/|~x⊥| is large enough for the second term in the denominator to dominate, which

- in this approximation - happens when

k2 > k2
c (k) =

(1 − b)M4
6

M3
5 r0 ln

[

2(1−b)
kr0

] , (4.13)

the logs in the integrand cancel, and the shock wave profile is

f(~x⊥, r0) ≃ − p

2π2M3
5 r0

∫ ∞

kc

dk
J0(k|~x⊥|)

k
=

p

πM2
4

ln

(

kc|~x⊥|
)

+ . . . . (4.14)

where we have used Gauss law to normalize the lightest KK modes in the expansion of

the brane induced curvature on the circle of radius r0 to M2
4 = 2πM3

5 r0. This is - to the

leading order - precisely the 4D Aichelburg-Sexl solution, with the log profile normalized

to the inverse of the critical momentum kc given in (4.13), as opposed to some arbitrary

short distance cutoff ℓ.

For sub-critical branes when 1−b ∼ O(1), this is the end of the 4D story: all distances

longer than r0 fall in the kr0 ≪ 1 regime, and the gravitational field looks 4D, like (4.14),

only when r < rc = 1/kc. In this, generic, case, the crossover scale is qualitatively very

different from the see-saw scale of [29]. Indeed, using Gauss law M3
5 =

M2
4

2πr0
, we can rewrite

1/k2
c from (4.13) as

r2
c (k) =

M2
4

2π(1 − b)M4
6

ln
[2(1 − b)

kr0

]

, (4.15)

or, ignoring the log, rc ∼ M4

M2
6 eff

, where M4
6 eff = (1 − b)M4

6 . Thus for sub-critical branes

the crossover scale is set by the ‘naive’ ratio of brane and effective bulk Planck scales, and
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depends on the UV cutoff r0 of the brane core only through the logarithmic correction

reminiscent of ‘running’ in real space, which was discussed for locally localized gravity

in [63]. This shows that the crossover weakly depends on the momentum, and is very

different from the see-saw mechanism of [29]. We also see that the bulk gravitational

coupling 1/M4
6 is amplified by the ‘lightning rod’ factor (1 − b)−1 of [50]. This ‘lightning

rod’ amplification is intuitively clear, because gravitational field lines spread more slowly

on a cone than on a plane, at a fixed distance from a source, and hence gravity must look

stronger on a cone [50]. It plays an even more important role in the near-critical limit, as

we will see below.

At distances larger than rc, gravity eventually changes to 6D. For sub-critical branes,

this transition actually looks like a rapid ‘running’ of the coupling of individual graviton

modes in the resonance that impersonates General Relativity. We can glimpse this, for

example, from eq. (4.12), which shows that the effective coupling controlling the transfer

of the momentum k is
1

M4
6 eff

=
1

(1 − b)M4
6

ln
[2(1 − b)

kr0

]

. (4.16)

In contrast to the 5D case [16], the running here is logarithmic, because there are two

extra dimensions as probed by the localized masses on the wrapped brane. To recover the

full 6D form of the wave, we can take (4.10) or (4.11), and taking the limit of very large

distance, ignore the second term in the denominators of these integrals. In this case,

f ≃ − p

2π2(1 − b)M4
6

∫ ∞

0
dk k I0(kr0)K0

(

k

(

ρ +
r0

1 − b

))

J0(k|~x⊥|) + . . . , (4.17)

where the integral can be done in closed form, leading to [50]

f ≃ − p

2π2(1 − b)M4
6

1

|~x⊥|2 + ρ2
+ . . . . (4.18)

This is the 6D gravitational shock wave, constructed in [58], with the ‘lightning rod’ term

accounting for the brane tension as found in [50].

Let us now consider the near-critical limit, b → 1, which requires particular care.

In this limit, eq. (4.15) suggests that the crossover scale diverges, indicating that gravity

remains 4D out to extremely large distances, regardless of the brane thickness. However our

discussion of the near-critical limit in section (3), in particular interpretation of eq. (3.12),

has already taught us otherwise. As we have seen there, in the near-critical limit the bulk

around the brane compactifies to a long cylinder, which opens up into a cone only very

far from the brane. Bulk gravity in the throat is in the 5D regime, which separates the

4D and 6D ones. Thus the crossover scale beyond which gravity is not 4D is really the

demarkation between the 4D regime, and 5D gravity which lives inside the throat. Looking

at the shock wave solution (4.11), we see that while the small argument expansion for In(z)

always suffices for large distances from the source, in the near-critical limit we must treat

the functions Kn(z) carefully for the momenta in the regime 1 − b ≪ kr0 ≪ 1. Indeed,

this corresponds to length scales ℓ <∼ r0
1−b which are shorter than the length of the conical

throat. So setting I0(kr0) → 1 and I1(kr0) → 0 in (4.11), we notice that where the terms
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∝ M3
5 dominate, gravity will remain 4D because the factors of K0(k

r0
1−b) exactly cancel

in the integrand. This happens for the momenta k which satisfy k >
M4

6

M3
5

K1(k
r0

1−b
)

K0(k
r0

1−b
)
. In the

near-critical limit this can occur when the argument of Bessel functions is much larger than

unity, so that the ratio K1/K0 will be of the order of unity! Indeed, as we decrease kr0,

going out to larger distances, K1 will remain close to K0: since K1(z) = −∂zK0(z) and

now, since b → 1, we have large values of the argument for which K0(z) →
√

π
2z e−z, so

that K1 → K0. The transition can occur only once, because Kn are monotonic, and for

our approximation to be valid it must happen when kr0
1−b ≥ O(1) - otherwise the situation

will be essentially the same as in a generic sub-critical case. In that case the crossover scale

saturates to kc =
M4

6

M3
5
, or therefore

rc =
M3

5

M4
6

. (4.19)

Clearly, this is valid as long as rc < r0
1−b . The scale rc is exactly the see-saw scale of [29]:

again using Gauss’s law for the 4D Planck mass, M2
4 = 2πM3

5 r0, we find

rc =
M2

4

2πM4
6 r0

. (4.20)

This demystifies the appearance of the see-saw effect, showing that at least with our reg-

ularization, it does happen naturally, but only for near-critical branes whose deficit angle

is very close to 2π, so that they still are flat and static.

As an explicit check that inside the conical throat gravity looks 5D, we can take the

limit of our solution for a fixed distance |~x⊥| and formally take the limit b → 1 while

holding r0 fixed. Then if we take the solution in eq. (4.11), in the limit b → 1 we can

replace Kn’s by their large argument expansion for any finite momentum. After cancelling

the like terms, and taking the thin brane limit, we find, using footnote (2),

f(~x⊥, ρ) = − p

2π2

∫ ∞

0
dk

J0(k|~x⊥|)
M4

6 r0 + M3
5 r0k

= −2p

∫ ∞

−∞

d2~k

(2π)2
ei~k·~x⊥

2πM4
6 r0 k + 2πM3

5 r0 k2
.

(4.21)

This is precisely the shock wave profile on a flat thin 3-brane in 5D, on the normal branch,

with brane and bulk Planck masses M2
4 eff = 2πM3

5 r0 and M3
5 eff = 2πM4

6 r0, respectively.

It can be obtained as a limit of the normal branch solutions of [16] on a tensionless brane.

So to sum up, we find that for distances r0 < r < rc the shock wave reduces to

the Aichelburg-Sexl solution [57], and becomes its higher-dimensional generalization when

r > rc. The crossover scale for sub-critical and near-critical branes, beyond which gravity

is not 4D anymore, is given by

r2
c =







M2
4

2π(1−b)M4
6

ln
[

2(1−b)
kr0

]

, b <∼ 1 ;

M4
4

4π2M8
6 r2

0
, b → 1 ,

(4.22)

only in the latter case agreeing with the see-saw scale discussed in [29]. The origin of

the see-saw mechanism is now clear: in the near-critical limit, the brane resides in a very
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deep throat generated by its own tension. Thus its localized 4D gravity first changes to

5D gravity residing inside the throat, and only later to full 6D gravity [59], at distances

ρ ≫ r0/(1 − b) (see discussion of eq. (3.12)). This shows how the see-saw mechanism

emerges.

5. Linearized gravity

5.1 Perturbations and their gauge symmetries

We can solve exactly the field equations (2.1) for localized matter sources only in the

relativistic limit. For nonrelativistic sources, we can try to solve them perturbatively,

assuming that the solutions converge to the background vacuum far from the sources. So

starting with a background ds2
6 = gAB dxAdxB metric, we define the metric perturbations

hAB as is usual, by the substitution gAB → gAB + hAB . In addition, we must also perturb

the brane location r0 → r0 + ξ and any nontrivial field configurations on the brane, in our

case the axion Σ → Σ+σ. Before substituting these expansions in the field equations (2.1),

we must account for the gauge symmetries of the perturbations, to identify physically

meaningful variables which cannot be undone with diffeomorphisms. So suppose that

we transform xA → x̄A = xA + χA. A straightforward calculation then shows that the

perturbations transform according to

hAB → h̄AB = hAB −∇AχB −∇BχA , ξ → ξ̄ = ξ +χρ|ρ=r0 , σ → σ̄ = σ−χA|ρ=r0∇AΣ ,

(5.1)

where the ∇A and raising and lowering of indices are defined with respect to the background

metric gAB . On the static thick brane background (3.10), we can immediately compute

the transformations (5.1), splitting them up with respect to different representations of the

4D Lorentz symmetry. They are

h̄µν = hµν − ∂µχν − ∂νχµ ,

h̄φφ = hφφ − 2∂φχφ − α′χρ ,

h̄µφ = hµφ − ∂µχφ − ∂φχµ ,

h̄µρ = hµρ − ∂µχρ − χµ
′ ,

h̄ρφ = hρφ − ∂φχρ − χφ
′ + χφ

α′

α
,

h̄ρρ = hρρ − 2χρ′ ,

ξ̄ = ξ + χρ(r0) ,

σ̄ = σ − qχφ(r0) , (5.2)

where

α = gφφ = ((1 − bΘ(ρ − r0))ρ + br0Θ(ρ − r0))
2 , (5.3)

is the area of the disk at fixed ρ in eq. (3.10), and χρ(r0) = χρ|ρ=r0 . We need to carefully

raise and lower the angular index φ, since although the brane is intrinsically flat, the full

geometry isn’t. Note, that while α is continuous: α′√
α

= 2(1 − bΘ(ρ − r0)), so that on the
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brane, the discontinuity, defined for any function as the jump of its value across the brane,

∆f = f |+ − f |− = f(r0
+) − f(r0

−), is ∆α′

α = −4 λ5

M4
6
, where we have used eq. (3.8).

Using these transformations we can always gauge fix the metric perturbed by axially

symmetric sources to brane-fixed Gaussian-normal gauge, in the linear order. The key is to

be careful about what axial symmetry means: the vector field ∂φ must be a Killing vector

of the metric, unperturbed as well as perturbed. Hence any tensor, including the metric,

must be Lie-derived by ∂φ to zero. Now, using (5.2), we can readily pick χρ and χφ to set

h̄ρρ and h̄ρφ to zero, respectively, treating the corresponding transformation rules in (5.2)

as differential equations defining χρ and χφ. We can always choose the boundary condition

χρ(r0) = 0, opting to keep the perturbation of the brane location ξ, or brane bending, to

remain unchanged, for the moment. Next, we can pick a χµ = χµ(ρ, φ) to set h̄µρ and h̄µφ

to zero too. This may seem to induce angular dependence of h̄µν by the first of eqs. (5.2).

However, it’s easy to check that in the coordinates where h̄ρρ = h̄ρφ = h̄µφ = h̄µρ = 0

the Killing conditions enforcing axial symmetry imply that ∂φh̄µν = ∂φh̄φφ = 0. Thus

the metric perturbations h̄AB are φ-independent. In fact, this proof extends beyond linear

perturbation theory, as the reader can check by consulting [64]. Notice that we have now

completely used up χφ(r0) - we can’t change σ without also changing hρφ, as is clear

from (5.2). This shows that the lightest in the tower of the KK vectors hρa eats the brane-

localized axion σ to become massive. Alternatively, when we pick the gauge hρa = 0, as

we did here, we are separating out the scalar σ as the Stückelberg field of hρa.

Dropping the overbars, note that in any Gaussian-normal gauge hρρ = hρφ = hµφ =

hµρ = 0, we still have the residual gauge freedom generated by χµ, which are independent

of ρ and φ, and by χρ(r0). These transformations do not change our gauge. They do change

hµν , hφφ, ξ. Transformations generated by χµ are the standard 4D diffeomorphisms, and

we will find their uses later on. Transformations generated by χρ(r0) allow us to remove

the brane bending, nailing the brane straight to its background value, ρ = r0. In this gauge

we can quickly find the field equations for the perturbations, by directly substituting the

gauge-fixed perturbed metric into the field equations (2.1) or (3.22).

Going to this gauge requires a little care, however. As we have noted above, α′

α is

discontinuous on the brane in the background (3.10). Hence when χρ(r0) 6= 0, the gauge

transformation (5.2) changes the metric perturbation hφφ discontinuously. On the other

hand, in brane-fixed Gaussian-normal gauge the full field configuration has discontinuities

on the straight brane, proportional to its the stress-energy. These must remain encoded in

the δ-function sources in (3.22). Hence the metric perturbations in brane-fixed Gaussian-

normal gauge must be continuous across the brane, and their derivatives may have at

most a finite jump there. In any other gauge found by using a transformation (5.2) with

χρ(r0) 6= 0, the metric perturbation hφφ will appear discontinuous, so that the brane

matching conditions on the perturbations can only be found by carefully implementing the

Israel junction conditions (for an illustration, see e.g. [51]). So to get the field equations,

we choose to work in brane-fixed Gaussian-normal gauge, where we get the brane matching

conditions by using Gaussian pillbox integration around the brane, and relating the nor-

mal derivative discontinuities to δ-sources in the field equations. This discussion applies

completely generally to any model where a codimension-2 brane is resolved by a cylindrical
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codimension-1 brane.

Nevertheless, it turns out the bulk field equations for perturbations are easier to solve

by stepping out of the brane-fixed Gaussian-normal gauge, to a gauge where the ρ-φ cone

appears conformally flat, and explicitly keeping the brane bending ξ. The latter is similar

to what happens in other codimension-1 cases [67], except that here the brane bending

must be turned on even in the 4D vacuum (3.10). The reason is that the 4D vacuum

backgrounds (3.10) are not codimension-1 vacua: the axion flux breaks the symmetry

between the longitudinal brane directions. Brane bending probes this ‘vacuum’ anisotropy.

Using the conformally flat ρ-φ metric, on the other hand, simplifies the bulk field equations.

For later use, we list here how to relate such gauges. In a Gaussian-normal gauge the only

nonvanishing metric perturbation is ĥφφ, now denoted with the caret. Defining Φ̂ by

ĥφφ = αΦ̂, the perturbed metric is

ds6
2 = (ηµν + hµν) dxµdxν + dρ2 + (1 + Φ̂)α(ρ) dφ2 , (5.4)

with α defined in (5.3). Let the brane bending term ξ in this gauge be non-zero. To go to

a gauge where it is zero, we apply (5.2), choosing χρ(r0) = −ξ. That takes us to the gauge

ξ̃ = 0, where the metric has the same form as (5.4), but with

Φ̃ = Φ̂ +
α′

α
ξ , (5.5)

instead of Φ̂. This shows how Φ̃ ‘ate’ ξ in brane-fixed Gaussian-normal gauge. On the

other hand, to relate a general Gaussian-normal gauge to a conformal gauge, we use the

relationship

Φ̂ = Φ − α′

2α

∫ ρ

r0

dρΦ , (5.6)

which is a gauge transformation of the form (5.2) with χρ = 1
2

∫ ρ
r0

dρΦ, and other gauge

parameters set to zero. For this gauge transformation, χρ(r0) = 0, and therefore it does not

change the discontinuities of the perturbations in different gauges. Now, to see which gauge

this transformation takes us from, we need to invert this integral equation, and determine

Φ. That is straightforward. By definition of χρ, we have Φ = 1
2χρ′, so we can view (5.6)

as a differential equation for χρ, with the boundary condition χρ(r0) = 0. The equation is

χρ′ − α′

2αχρ = Φ̂, and the solution satisfying the boundary condition is χρ =
√

α
∫ ρ
r0

dρ Φ̂√
α
.

Thus

Φ =
1

2

d

dρ

(√
α

∫ ρ

r0

dρ
Φ̂√
α

)

. (5.7)

Then (5.6) and (5.2) imply that in the original gauge hφφ =
√

αΦ. Furthermore, from

ĥρρ = 0 and eqs. (5.6) and Φ = 1
2χρ′ we see that hρρ =

√
αΦ too. So indeed, the gauge

transformation (5.2) defined by (5.6), (5.7) relates the general Gaussian-normal perturbed

metric (5.4) to the metric

ds6
2 = (ηµν + hµν) dxµdxν + (1 + Φ)

(

dρ2 + α(ρ) dφ2
)

, (5.8)
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If in addition we want to relate brane-fixed Gaussian-normal gauge perturbation to the 2D

conformal gauge perturbation (5.8), we can combine together the two cases. Then, (5.5)

and (5.6) yield

Φ̃ = Φ − α′

2α

∫ ρ

r0

dρΦ +
α′

α
ξ , (5.9)

relating the metric perturbation Φ in a 2D conformal gauge with brane bending ξ to the

metric perturbation Φ̃ in brane-fixed Gaussian-normal gauge. Since Φ̃ must be continuous

on the brane, we see from (5.9) that Φ is not. Instead, it jumps across the brane by

∆Φ = −∆(α′

α )ξ = 4 λ5

M4
6
ξ. These formulae will come in handy later on.

5.2 Linearized field equations and helicity decomposition

We find the field equations for perturbations with axially symmetric sources by substituting

the perturbed metric in the brane-fixed Gaussian-normal gauge,

ds6
2 = (ηµν + hµν) dxµdxν + dρ2 + (1 + Φ̃)α(ρ) dφ2 , (5.10)

with ξ̃ = 0, into (3.22), and expanding to the linear order in the perturbation Φ̃. Since

the field equation ∇a∇aΣ = 0 reduces to the source-free 4D Klein-Gordon equation for

the axion perturbation σ: ∂4
2σ = 0, in the linear order the axion is not sourced by axially

symmetric matter distributions. We can simply set σ to zero from now on. This is self-

consistent at distances |~x|, ρ ≫ r0. In this limit we can dimensionally reduce the brane

theory to a set of KK towers with a mass gap ∝ 1/r0. Since a background on the brane

which is not axially symmetric must involve higher-level KK states, to encode the angular

variation around the brane, at low energies E ≪ 1/r0 we can only excite the lightest states,

and the backgrounds will automatically be axially symmetric. In fact, since the axion σ

really is the Stückelberg field of the vector hρa, it will only be turned on when the vector

field is turned on, which means when there is a non-trivial current that can source hρa.

Evaluating the curvature tensors and the stress-energy terms in (3.22) we find the field

equations for perturbations in this limit. They are the momentum constraint, coming from

the ρ-µ components,

∂λ(hλ′
µ − δλ

µ(h′
4 + Φ̃′ +

α′

2α
Φ̃)) = 0 , (5.11)

the trace equation,

h′′
4 + Φ̃′′ +

α′

α
Φ̃′ =

1

2M4
6

(

τa
a −

3M3
5

2
∂4

2Φ̃ + 3λ5Φ̃ +
3M3

5

2
(∂λ∂σhσ

λ − ∂4
2h4)

)

δ(ρ − r0) ,

(5.12)

the ‘radion field’ equation, coming from the φ-φ component,

∂4
2Φ̃ + Φ̃′′ +

α′

α
Φ̃′ +

α′

2α
h′

4 =

1

2M4
6

(

τa
a − 4τφ

φ − 3M3
5

2
∂4

2Φ̃ + 7λ5Φ̃ − M3
5

2
(∂λ∂σhσ

λ − ∂4
2h4)

)

δ(ρ − r0) , (5.13)
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and finally the 4D tensor equations,

∂µ∂λhλ
ν + ∂ν∂λhµλ −∇6

2hµ
ν − ∂µ∂νh4 − ∂µ∂νΦ̃ =

2

M4
6

[

τµ
ν − 1

4
τa

aδ
µ

ν +
M3

5

2
(∂µ∂νΦ̃ − 1

4
∂4

2Φ̃δµ
ν) +

λ5

4
Φ̃δµ

ν − (5.14)

M3
5

2

(

∂µ∂λhλ
ν + ∂ν∂λhµλ − ∂4

2hµ
ν − ∂µ∂νh4 −

1

4
δµ

ν(∂
λ∂σhσ

λ − ∂4
2h4)

)

]

δ(ρ − r0) .

Here h4 = hµ
µ is the trace of the 4D perturbation hµν , the sources τa

b describing the brane

matter perturbations naturally decompose as τµ
ν and τφ

φ, and τa
a = τµ

µ + τφ
φ the full

5D trace of τa
b. The covariant d’Alembertian ∇6

2 is defined as before, with respect to the

full background metric (3.10).

This system contains redundancies, which we need to disentangle away. First, we need

to break down the perturbation hµ
ν into irreducible 4D representations of the Lorentz

group, which is the symmetry of the background (3.10). Using the flat limit of the decom-

position theorem in [25], we can write

hµ
ν = γµ

ν + ∂µAν + ∂νAµ + ∂µ∂νΨ − 1

4
δµ

ν ∂4
2Ψ +

1

4
δµ

ν h4 , (5.15)

where γµ
ν is a transverse-traceless (TT) tensor satisfying ∂µγµ

ν = γµ
µ = 0, with 5 helicities,

Aµ is a Lorenz-gauge vector, ∂µAµ = 0, with 3 helicities, and Ψ and h4 = hµ
µ are two

scalars. The total number of degrees of freedom adds up to ten, which is the number of

independent components of a symmetric 4× 4 tensor. Once we recall that these modes are

all dependent on ρ and, in principle, could also depend on φ, we really end up with KK

towers of degrees of freedom classified by their 4D masses in addition to their helicities. Of

course, not all of these modes may end up being physical; some could be pure gauge modes,

and one has to carefully check that using the field equations and the gauge symmetries of

the problem. As we will only work with axially symmetric perturbations, our task will be

considerably simpler.

The field equations (5.11)–(5.14) for the linearized theory also decompose by helici-

ties due to 4D Lorentz invariance of the background. A simple way to separate out the

equations is to define the transverse-traceless tensor projection operator Kµναβ , such that

Kµν
αβhαβ = γµν . This operator must satisfy Kµναβ = Kνµαβ = Kµνβα and Kµ

µαβ =

∂µKµναβ = 0. The unique solution is

Kµναβ = − 1

3

[

ηµνηαβ − 3

2

(

ηµαηνβ + ηµβηνα

)

− ηµν
∂α∂β

∂4
2

− ηαβ
∂µ∂ν

∂4
2

(5.16)

+
3

2

(

ηνβ
∂µ∂α

∂4
2

+ ηµβ
∂ν∂α

∂4
2

+ ηνα
∂µ∂β

∂4
2

+ ηµα
∂ν∂β

∂4
2

)

− 2
∂µ∂ν∂α∂β

∂4
4

]

.

Clearly, this operator annihilates the vector and scalar terms in (5.15), and when we apply

it to eq. (5.14), it projects out the TT contributions. Since the vacuum (3.10) is 4D-flat,

stress energy conservation implies ∂µτµ
ν = 0, and so

Kµν
αβταβ = τµ

ν − 1

3

(

δµ
ν − ∂µ∂ν

∂4
2

)

τα
α . (5.17)
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Hence our final form of the TT-tensor field equation is

∇6
2γµ

ν +
M3

5

M4
6

∂4
2γµ

ν δ(ρ − r0) = − 2

M4
6

[

τµ
ν − 1

3

(

δµ
ν − ∂µ∂ν

∂4
2

)

τα
α

]

δ(ρ − r0) . (5.18)

Subtracting the TT-tensor equation from (5.14) leads to the system which contains

only the vector and scalar contributions. We can extract the vector in a similar way as the

TT-tensor, by defining the vector projection operator Vαβ, and acting on the momentum

constraint (5.11). Since the backgrounds (3.10) are Lorentz-invariant, in the linear order of

perturbation theory vector sources vanish and the vector modes decouple from the matter

distribution. Hence we can set the vector field in (5.15) to zero.

This leaves us with scalars. In brane-fixed Gaussian-normal gauge, they are Φ̃, Ψ and

h4, obeying the field equations (5.11)–(5.13) and what remains of (5.14) after we subtract

out (5.18). To pick out the minimal set of independent equations for scalars from the

system (5.11)–(5.14), we define X = 1
4(h4 − ∂4

2Ψ), write the scalar part of the metric

perturbation as
shµ

ν = ∂µ∂νΨ + Xδµ
ν , (5.19)

and substitute it into the difference of eqs. (5.14) and (5.18). The result is a combination

of two independent 4D tensors, diagonal ∝ δµ
ν and off-diagonal ∝ ∂µ∂ν . Hence the

coefficients of these tensors must separately vanish. Likewise, we could write the 4D trace

of this equation. However it is a trivial linear combination of the diagonal and off-diagonal

terms, and so we can ignore it immediately. Then, combining these equations with (5.11)–

(5.13), and substituting (5.19) for hµν , we get

∂λ

(

3X ′ + Φ̃′ +
α′

2α
Φ̃

)

= 0 , (5.20)

Φ̃′′ +
α′

α
Φ̃′ + ∂4

2Ψ′′ + 4X ′′ = (5.21)

1

2M4
6

(

τµ
µ + τφ

φ + 3λ5Φ̃ − 3M3
5

2
∂4

2(Φ̃ + 3X)

)

δ(ρ − r0) ,

∂4
2Φ̃ + Φ̃′′ +

α′

α
Φ̃′ +

α′

2α

(

∂4
2Ψ′ + 4X ′

)

= (5.22)

1

2M4
6

(

τµ
µ − 3τφ

φ + 7λ5Φ̃ − 3M3
5

2
∂4

2(Φ̃ − X)

)

δ(ρ − r0) ,

Ψ′′ +
α′

2α
Ψ′ + Φ̃ + 2X = (5.23)

1

M4
6

(

2

3M3
5

∂4
−2(τµ

µ) − M3
5 (Φ̃ + 2X)

)

δ(ρ − r0) ,

X ′′ +
α′

2α
X ′ + ∂4

2X = (5.24)

− 1

4M4
6

(

2

3
(τµ

µ − 3τφ
φ) + 2λ5Φ̃ − M3

5 ∂4
2(Φ̃ − X)

)

δ(ρ − r0) ,

where we have decomposed the full d’Alembertian as ∇6
2 = ∂4

2 +∇2
~y and used the formula

for axially symmetric fields ∇2
~y = d2

dρ2 + α′

2α
d
dρ . We have replaced the 5D stress-energy trace
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by τa
a = τµ

µ + τφ
φ. In eq. (5.20), we can immediately omit the 4D divergence ∂λ because

the 4D background is flat Minkowski. In eq. (5.24), ∂4
−2 acting on τµ

µ can be simply

understood as a multiplication of the Fourier components of τµ
µ by −1/k2, as we will do

later on. Finally, we note that the bulk terms in eq. (5.25) depend only on X, and hence

can be readily integrated. Thus we should keep it in our final set of independent field

equations.

We find that if we add eqs. (5.22) and (5.23), and subtract from the result ∂4
2×

eq. (5.24) and 4× eq. (5.25), the result is a linear combination of the ρ-derivative of

eq. (5.20) and eq. (5.25). Next, we can similarly start with eq. (5.22) but now subtract

eq. (5.23), ∂4
2× eq. (5.24) and 4× eq. (5.25). The result is very simple:

∂4
2
(

Φ̃ + 3X
)

+
α′

2α

(

∂4
2Ψ′ + 4X ′

)

= 0 . (5.25)

In this equation, the sources on the right hand-side completely cancel, since they are

localized on the brane. The reason is that this is the perturbed gravitational equation

in the radial direction, which is sourceless in brane-fixed Gaussian-normal gauge. This

equation is particularly useful when we look for the solutions in the bulk, as we will see

below. Further, we can also check, by using the ρ-derivative of (5.20), that the bulk part

of eq. (5.24) reduces precisely to eq. (5.25).

These observations teach us that in the bulk we can trade eqs. (5.22), (5.23) and (5.24)

for one independent combination, which, with wisdom after the fact, we choose to be pre-

cisely eq. (5.25). This, however, is slightly tricky on the brane itself. A product of functions

which are discontinuous on the brane appears in eq. (5.25): α′

α and ∂4
2Ψ′ +4X ′. Hence al-

though this equation contains no terms ∝ δ(ρ−r0), it still gives some information about the

boundary behavior of the scalars, albeit weaker. It requires that ∆
(

α′

2α(∂4
2Ψ′ +4X ′)

)

= 0.

Although the factors are bounded, because they are discontinuous this condition — by it-

self — is degenerate: it relates the jumps of the functions to their values on different sides

of the brane. So using it alone we can’t extract unambiguously the junction conditions for

∂4
2Ψ′ + 4X ′. However, the degeneracies in the boundary information in (5.25) are com-

pletely artificial. They are easily lifted by going back to any of the boundary conditions

encoded in the δ-function terms in either of eqs. (5.22), (5.23) and (5.24). From examining

these equations it is clear that the most useful form of the boundary condition is obtained

from eq. (5.24), because the boundary condition for Φ̃ is tied to the one for X by eq. (5.20).

Thus, our independent equations in the bulk are (5.20), (5.25) and (5.25), supplemented

with the boundary conditions obtained by Gaussian pillbox integration of (5.24) and (5.25)

around the brane. Further, we can immediately integrate (5.20) once, with respect to xλ,

and ignore the non-normalizable homogeneous mode on the brane. With this, finally, our

system of equations reduces to the bulk system

3X ′ + Φ̃′ +
α′

2α
Φ̃ = 0 , (5.26)

∂4
2
(

Φ̃ + 3X
)

+
α′

2α

(

∂4
2Ψ′ + 4X ′

)

= 0 , (5.27)

X ′′ +
α′

2α
X ′ + ∂4

2X = 0 , (5.28)
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∆X ′ = − 1

4M4
6

(

2

3
(τµ

µ − 3τφ
φ) + 2λ5Φ̃ − M3

5 ∂4
2(Φ̃ − X)

)

, (5.29)

∆Ψ′ = −M3
5

M4
6

(Φ̃ + 2X) , (5.30)

where the last two encode the boundary conditions, equating the jumps of bulk derivatives

to the brane stress-energy. This set of equations is fairly straightforward to solve: eq. (5.26)

relates Φ̃ to X, which is determined by eq. (5.28) and boundary condition (5.29). Then

eqs. (5.27) and (5.30) determine the remaining variable, Ψ.

5.3 Solutions

We now turn to finding the solutions of the system (5.18), (5.26)–(5.30). The most interest-

ing solutions are those which describe the long range fields of static sources on the brane.

They are our key probe of what kind of gravity the theory reduces to at long distances. One

could quite straightforwardly also determine the spectrum of the theory around the vac-

uum, when the stress-energy sources τa
b = 0. We have done it, to find that the spectrum

contains a continuum of massive tensors and a scalar, fully described by one independent

variable X. In this section we will give the solutions of linearized theory which apply to a

general case of arbitrary time dependent solutions. However what is really important is to

see how these modes couple to matter in order to determine just how dangerous, or not,

the extra modes may be at long distances. For this reason, we will focus on the long range

static fields, completely determined by the static rings of matter on the brane. We will

also write down the formal solution for the full metric perturbation hµ
ν , which will enable

us to see the tensor structure of full long range gravity in the linearized theory.

Let us start with the field equation governing the tensor modes, eq. (5.18). This

equation can be solved very easily using the standard Green’s function techniques. Ex-

panding out the bulk d’Alembertian ∇6
2, and Fourier-transforming over the 4D vari-

ables xµ, while keeping in mind that the fields are axially symmetric, to γµ
ν(x, ρ) =

∫

d4k
(2π)4

γµ
ν(k, ρ) exp(ik · x) and τa

b(x, ρ) =
∫

d4k
(2π)4

τa
b(k, ρ) exp(ik · x), we can rewrite the

TT-tensor equation as

γµ
ν
′′+

α′

2α
γµ

ν
′−k2γµ

ν−
M3

5

M4
6

k2γµ
ν δ(ρ−r0) = − 2

M4
6

[

τµ
ν−

1

3

(

δµ
ν−

kµkν

k2

)

τα
α

]

δ(ρ−r0) .

(5.31)

The solution of this equation can be written in terms of the Green’s function GTT(k, ρ),

defined by the equation

GTT′′ +
α′

2α
GTT′ − k2GTT −

M3
5

M4
6

k2GTT δ(ρ − r0) =
1

M4
6

δ(ρ − r0) . (5.32)

Then the solution is simply

γµ
ν(k, ρ) = −2GTT(k, ρ)

[

τµ
ν − 1

3

(

δµ
ν − kµkν

k2

)

τα
α

]

, (5.33)

where we postpone the detailed determination of GTT until later. For now, it is enough to

see that it exists, after we specify appropriate boundary conditions at bulk infinity and

inside the wrapped brane, which ensure the regularity of the solution.
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The scalar story is more intricate. The reason is that the backgrounds (3.10), which

we take as 4D vacua of the theory, are not vacuum solutions from either the bulk or

the wrapped 4-brane theory points of view, because they contain a non-trivial Σ field

contribution to stress-energy on the brane. As we discussed, that is necessary to wrap

the brane on a circle and make it look like a codimension-2 object. However, because

of this, the brane bending term will always appear in perturbation theory around the

wrapped vacuum, even if the matter perturbations τa
b vanish, in contrast to the simpler

codimension-1 cases studied in [67]. This is interesting because it lends to a difference in

the couplings of scalar metric perturbations, and the helicity-0 modes from the massive

graviton multiplets at the same mass levels.

So let us construct the solution of (5.26)–(5.30). We first Fourier-transform all the

fields over the 4D xµ space, as in the case of TT-tensors above. Then we take a slightly

roundabout approach, due to the presence of the background flux of Σ, reflected by the

tension-dependent terms in (5.26)–(5.30) (explicit, as well as implicit in α′

α ). We need to

carefully identify how they mix different scalar fields. To this end it is useful to recall

the gauge transformations (5.9), and explicitly restore the brane bending term ξ which

keeps the brane-localized terms in check. Using (5.9) and the background equation (α′

α )′ =

− α′2

2α2 − 4 λ5

M4
6
δ(ρ− r0), we can check that Φ̃′ + α′

2α Φ̃ = Φ′. Substituting this in eq. (5.26), we

find 3X ′ + Φ′ = 4 λ5

M4
6
ξδ(ρ − r0), which is very easy to integrate over ρ: we get 3X + Φ =

4 λ5

M4
6
ξΘ(y) + F , where F is a Fourier-transform of some function F (x). However, we recall

that this equation was already integrated once over xµ, which implies that ∂µF = 0 for

consistency, or F = const.. However, any such integration constant can be readily removed

by a residual 4D diffeomorphism of the form χµ = F
2 xµ as one can immediately check.

Thus we can set F = 0, to find

Φ = −3X +
4λ5

M4
6

ξ Θ(ρ − r0) . (5.34)

Again using (5.9) and noting the integral identity
∫ ρ
r0

dρΘ(ρ − r0) = (ρ − r0)Θ(ρ − r0), we

can write the solution for Φ̃:

Φ̃ = −3X +
3α′

2α

∫ ρ

r0

dρX +
α′

α
ξ +

4λ5

M4
6

ξ Θ(ρ − r0)

[

1 − α′

2α
(ρ − r0)

]

. (5.35)

In particular, on the brane it is given by Φ̃(r0) = −3X(r0) + 2
r0

ξ.

Next we solve for Ψ, by substituting eq. (5.35) into eq. (5.27), and defining

Υ′ = Ψ′ + 3

∫ ρ

r0

dρX + 2ξ − 4
λ5

M4
6

ξ Θ(ρ − r0) . (5.36)

With this, eq. (5.27) becomes

α′

2α

(

Υ′ − 4X ′

k2

)

= −4
λ5

M4
6

ξ Θ(ρ − r0) , (5.37)

These two equations are straightforward to integrate. After a simple algebra we find

Ψ =
4

k2
X−3

∫ ρ

r0

dρ

∫ ρ

r0

dρX(ρ)−2ρ ξ+
2λ5

M4
6

ξ

∫ ρ

r0

dρ

(α′

α )
Θ(ρ−r0)

(

2(ρ−r0)
α′

α
−4

)

, (5.38)
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where we have subtracted, using another residual 4D diffeomorphism, an arbitrary 4D wave

which arises as the Fourier transform of the constants of integrations that yield (5.34). On

the brane, this yields Ψ = 4
k2 X − 2r0 ξ. Before proceeding, note that both solutions for Φ̃

and Ψ, eqs. (5.35) and (5.38), remain indifferent to the presence of brane matter sources,

which are completely encoded in the bulk field X and the brane bending ξ. Once we

find solutions for X and ξ in the presence of sources, we can just substitute them back

into (5.35) and (5.38) and have Φ̃ and Ψ as well. This greatly facilitates integration, and is

the reason behind our choice of eqs. (5.26)–(5.30) for the description of the scalar sector.

So let us determine X and ξ. First, we solve for ξ using the boundary conditions (5.29)

and (5.30) and solutions (5.35) and (5.38). Using the expression for Φ̃ on the brane given

above we can eliminate Φ̃ from the boundary conditions. Then we use the solution (5.30)

to relate ∆Ψ′ to ∆X ′, which gives

∆Ψ′ =
4

k2
∆X ′ − 8λ5

M4
6 (α′

α )|+
ξ . (5.39)

Finally, using (5.29) to evaluate ∆X ′, we compare (5.30) and (5.39), and compute ξ in

terms of the value of X on the brane. A simple albeit tedious algebra yields

ξ =
3(1 − b)M3

5 r2
0

2bM4
6

k2 +
bM4

6

M3
5 r0

1 − b + k2r2
0

X +
(1 − b)r2

0

bM4
6

τφ
φ

1 − b + k2r2
0

, (5.40)

where we have used (α′

α )|+ = 2
r0

− 4λ5

M4
6
, obtained from (5.3), and resorted to eq. (3.8) to

reintroduce b = 2λ5r0

M4
6

. We notice, that in the thin brane limit, r0 → 0, the brane bending

term formally vanishes, if we hold all other terms in eq. (5.40) fixed. Now we can finally go

after X. Using the expressions for Φ̃ = −3X(r0) + 2
r0

ξ on the brane, and with ξ given in

eq. (5.40), we can eliminate them from the boundary condition (5.29) in favor of X. This

yields

∆X ′ =
M3

5

M4
6

(

k2+
3bM4

6

4M3
5 r0

−β(k2)

)

X− 1

6M4
6

(

τα
α+

3M3
5 r0k

2

bM4
6

1 − b − bM4
6 r0

M3
5

1 − b + k2r2
0

τφ
φ

)

, (5.41)

where

β(k2) =
3M3

5 r0

4bM4
6

1 − b

1 − b + k2r2
0

(

k2 +
bM4

6

M3
5 r0

)2

, (5.42)

is the correction to the brane kinetic term of the scalar X originating from the brane

bending contributions. The field equation in the bulk (5.28) is very simple. If we rewrite it

with the boundary condition (5.41) restored as a δ-function term, in the Schrödinger form,

we can compare it to the TT-tensor field equations (5.31). The equation is

X ′′ +
α′

2α
X ′ − k2X − M3

5

M4
6

(

k2 +
3bM4

6

4M3
5 r0

− β(k2)

)

X δ(ρ − r0) =

− 1

6M4
6

(

τα
α +

3M3
5 r0k

2

bM4
6

1 − b − bM4
6 r0

M3
5

1 − b + k2r2
0

τφ
φ

)

δ(ρ − r0) . (5.43)
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This equation is very similar to the TT-tensor equation (5.31), with the differences being in

the brane-localized terms. We will comment on them below. Here, we note that we can now

exploit the formal similarity with TT-tensor equation and use the Green’s function methods

again, to find the solution. This time we define the scalar Green’s function GX(k, ρ) by

GX′′ +
α′

2α
GX′ − k2GX −

M3
5

M4
6

(

k2 +
3bM4

6

4M3
5 r0

− β(k2)

)

GX δ(ρ − r0) =
1

M4
6

δ(ρ − r0) . (5.44)

Formally the solution is

X(k, ρ) = −1

6
GX(k, ρ)

[

τα
α +

3M3
5 r0k

2

bM4
6

1 − b − bM4
6 r0

M3
5

1 − b + k2r2
0

τφ
φ

]

, (5.45)

where again we defer the detailed determination of GX until later.

Let us now briefly outline here the procedure for extracting the long range physical

fields from the solutions. We recall that by axial symmetry of the configurations which we

are exploring, at distances ℓ > r0, we can dimensionally reduce the theory on the compact

circle. Hence the long distance dynamics will really be described by a scalar-tensor theory,

where the Brans-Dicke-like scalar field, or the radion, is g
1/2
φφ . In addition, in the tensor

sector there will be the helicity-0 mode resonance as well as the helicity-2 ones. The radion

g
1/2
φφ already renders the effective gravitational strength as evaluated from the brane-induced

gravity action field-dependent. Indeed, at the linearized level about the vacuum, we see

from eq. (5.10) that since we are working in Gaussian-normal brane-fixed gauge, the scalar

field will be χBD = (1+ Φ̃
2 )α1/2(ρ), where α1/2(ρ) is its background value, and α1/2(ρ) Φ̃

2 the

perturbation sourced by the rings of matter on the wrapped brane. Clearly, the background

variation of χBD retains the memory of the compactified dimension, which opens up as

one moves away from the cylindrical brane, as discussed recently in [59]. Nevertheless, the

description in terms of the reduced theory is still perfectly justified at the linearized level

with axisymmetric sources. It is then useful to go to the analogue of the effective ‘Einstein’

frame for the dimensionally reduced perturbation theory, in order to separate out graviton

and scalar forces, and compare the linearized fields to 4D General Relativity. In doing so,

we will ignore the prefactors α1/2 as they are fully absorbed in the background solution,

and only remove the perturbations Φ̃ from the effective Planck scales, because we are most

interested in the effective theory along the brane. Thus the radial variation of the effective

bulk Planck scale is not important at the linearized level of perturbation theory. So we

proceed by noting that the graviton kinetic terms in the full 6D theory come from

S6D ∋
∫

d6x
√

g6
M4

6

2
R6 +

∫

ρ=r0

d5x
√

g5
M3

5

2
R5 . (5.46)

Then dimensionally reducing on the circle changes these terms to

S6D ∋
∫

d5x
√

g5 πM4
6 α1/2(ρ)

(

1 +
Φ̃

2

)

R5 +

∫

ρ=r0

d4x
√

g4 πM3
5 r0

(

1 +
Φ̃

2

)

R4 . (5.47)

To go to the effective ‘Einstein’ frame, we absorb the radion perturbation by confor-

mally transforming the metric to gEAB = Ω2gAB . Although the graviton kinetic terms live
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in different dimensions, we can render the conformal rescalings of the two terms the same

thanks to the fact that we are working entirely in the Gaussian-normal brane-fixed gauge.

Since our starting metric satisfies gρρ = 1, gρµ = 0, we can change the radial coordinate

to ρ̄ =
∫

dρΩ to ensure that the bulk term changes under the conformal transformation

as dρ
√

g5 R5 = dρ′
√

gE5 RE
5/Ω

2, i.e. the same as the brane term. We bear in mind that

we will need to change xµ coordinates in order to keep the reduced metric in Gaussian-

normal brane fixed gauge. So to absorb the factors ∝ Φ̃ from in front of the graviton

kinetic terms (5.47) we need Ω2 = 1 + Φ̃
2 . This defines our radial gauge transformation

by ρ̄ =
∫ ρ
r0

dρ(1 + Φ̃
4 ) + r0 = ρ + 1

4

∫ ρ
r0

dρ Φ̃ where we have chosen the integration constant

to ensure that the brane remains fixed, at ρ̄ = r0. This transformation is of the form of

general diffeomorphisms (5.2) with χρ = 1
4

∫ ρ
r0

dρ Φ̃. Then to keep the perturbation h̄µρ

from appearing and ensure that we are still in the Gaussian-normal gauge, we need to pick

χ′
µ = −∂µχρ, or therefore χµ = −1

4

∫ ρ
r0

dρ
∫ ρ
r0

dρ ∂µΦ̃ (where we can ignore the overbars in

these expressions to the leading order).

But now, from these expressions we immediately see that the gauge transformations

vanish on the brane! Hence, the gauge fixing on the brane is unaffected by the dimensional

reduction, and when calculating the fields along the brane we can just use the expressions

in the original coordinates, ignoring altogether their behavior in the bulk.2 Thus we can

use the conformal transformation gEµν = (1 + Φ̃
2 )gµν on the brane. Now after Fourier

transforming the decomposition theorem formula (5.15), and replacing h4 by X using

eq. (5.19), the full metric perturbation along the brane in the original frame is

hµ
ν = γµ

ν − kµkνΨ + Xδµ
ν , (5.48)

where on the brane Ψ = 4
k2 X − 2r0ξ. After our conformal transformation to linear order

in perturbation, we find that hE
µν = hµν + Φ̃

2 ηµν , or therefore, using the expressions for Φ̃,

Ψ on the brane to express them all in terms of the variables X and ξ,

hE µ
ν = γµ

ν − 4

(

X − r0k
2

2
ξ

)

kµkν

k2
+

(

ξ

r0
− X

2

)

δµ
ν , (5.49)

where of course ξ is given by (5.40). This is the effective ‘Einstein’ frame field of matter

rings on the wrapped brane, which may yet contain extra scalar-like contributions from

the helicity-0 modes. To see how it behaves we now need to find out the explicit forms of

Green’s functions GTT and GX.

5.4 Fields of static sources along the brane

Since we are looking for the static solutions, obeying kµ = (0, ~k), which implies that all the

momentum space Fourier transforms are formally G(k) = 2πδ(k0)G(~k), we can factorize

out the energy Green’s function, set k0 = 0 in the formulas of the previous section, and

drop the integration
∫

dk0

2π from the Fourier integral. We then solve the Green’s function

equations (5.32) and (5.44) using — again, as in the construction of the shock waves —

2Forearmed with the knowledge that the fields are localized near the brane, which will be ensured by

the asymptotic boundary conditions on Green’s functions.
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the standard technique of sewing together the solutions of the homogeneous equation on

either side of the brane, regular in the center and far away.

Off the brane, both equations (5.32) and (5.44) look the same. The solutions which

are regular in the center and at infinity are

G =







AI0

(

kρ
)

, ρ ≤ r0 ;

BK0

(

k(ρ + br0
1−b)

)

, ρ ≥ r0 ,
(5.50)

where now k = |~k|. We sew them together at the brane by using the boundary condition

found with the Gaussian pillbox integration of eq. (5.32), that now gives different results

for the two Green’s functions,

∆GTT =
M3

5

M4
6

k2GTT +
1

M4
6

, ∆GX =
M3

5

M4
6

[k2 +
3bM4

6

4M3
5 r0

− β(k2)]GX +
1

M4
6

, (5.51)

with β(k2) given in (5.42), and then setting the homogeneous solution to zero. This yields

GTT =
1

M4
6 k

I0(kρ<)K0(kρ>)

I0(kr0)K1(k
r0

1−b ) + I1(kr0)K0(k
r0

1−b) +
M3

5k

M4
6

I0(kr0)K0(k
r0

1−b)
, (5.52)

and

GX =
1

M4
6 k

I0(kρ<)K0(kρ>)

I0(kr0)K1(k
r0

1−b )+I1(kr0)K0(k
r0

1−b)+
M3

5

M4
6 k

[k2+
3bM4

6

4M3
5 r0

−β(k2)]I0(kr0)K0(k
r0

1−b )
,

(5.53)

where, just as in eq. (4.10),

I0(kρ<)K0(kρ>) =







I0

(

kρ
)

K0

(

k r0
1−b

)

, ρ ≤ r0 ;

I0

(

kr0

)

K0

(

k(ρ + br0
1−b )

)

, ρ ≥ r0 .
(5.54)

In fact the Green’s function GTT is identical to the Green’s function that appears in the

shock wave solution (4.9). This should hardly come as a surprise, because it is obvious

from eq. (5.31) that it has the same form as the shock wave equation when the stress

energy source is traceless. The only difference between these two cases is in the domain of

Fourier integration, which for relativistic sources involves one integration fewer because of

the Lorenz boost of the longitudinal direction.

Since we wish to explore the fields along the brane, we set ρ = r0 in the Green’s func-

tions (5.52) and (5.53). At distances ℓ ≫ r0, where we can limit our attention to axisym-

metric configurations, for which the solutions (5.52) and (5.53) are valid, kr0 ∼ r0/ℓ ≪ 1,

we can always replace I0 and I1 by their small argument expansion, and approximate them

by I0 → 1, I1 → 0. We must be more cautious with K0 and K1 since they depend on

the deficit angle, and for near critical branes kr0/(1 − b) may be big even when kr0 ≪ 1.

Thus we will need to consider the limits b <∼ 1 and b → 1 separately. We have already
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encountered this previously, in the example with shock waves. With this in mind, we see

that the consistent approximation of the Green’s functions (5.52) and (5.53) is

GTT =
1

M4
6

1
K1(k

r0
1−b

)

K0(k
r0

1−b
)
k +

M3
5

M4
6
k2

, (5.55)

GX =
1

M4
6

1
K1(k

r0
1−b

)

K0(k
r0

1−b
)
k +

M3
5

M4
6
[k2 +

3bM4
6

4M3
5 r0

− β(k2)]
, (5.56)

The TT-tensor sector is particularly simple to understand from (5.53). As with shock

waves, we see that the behavior of the theory is governed by the ratio kc =
M4

6 K1(k
r0

1−b
)

M3
5 K0(k

r0
1−b

)
,

which controls the denominator of GTT at low momenta. For k < kc, or distances ℓ > 1/kc,

the dominant contributions always come from ∝ K1(k
r0

1−b
)

K0(k
r0

1−b
)
. In this limit the long range

fields manifestly reveal the extra dimensions, since the scaling of the potentials will not be

4D. In the generic sub-critical cases, b <∼ 1 and for momenta k ≪ 1/r0 we can replace the

Bessel functions Kν by their small argument expansion along the brane, which yields the

crossover scale identical to eq. (4.15), r2
c (k) =

M2
4

2π(1−b)M4
6

ln
[

2(1−b)
kr0

]

. Beyond this distance,

the theory behaves as a 6D gravity on a cone.

In the near-critical limit, however, b → 1, at intermediate momenta we should instead

approximate Kν by their large argument expansion, as in the shock wave analysis of the

near-critical models building up to eq. (4.19). In this case the crossover scale is rc =
M3

5

M4
6
,

where gravity first changes into a 5D theory, because for near-critical tensions one bulk

dimension is efficiently compactified on a circle, as discussed recently in [59], and in our

shock wave analysis. Eventually, the circle opens up and the theory again turns into a 6D

gravity on a cone. As a result we see that the crossover scale, beyond which the theory

will not look 4D, is exactly the same as in eq. (4.22), which was already revealed by the

shock waves. We again confirm that the see-saw mechanism of [29] is realized only in the

near-critical limit, but the crucial dynamics which manufactures the see-saw scale is the

compactification of one bulk dimension induced by a near-critical brane [59].

What remains is to check precisely what kind of 4D theory we have below the crossover

scale rc, in the regime of distances r0 ≪ ℓ ≪ rc. For TT-tensors, by previous discussion

we can neglect the terms in the denominator ∼ K1(k
r0

1−b
)

K0(k
r0

1−b
)
. The Green’s function reduces to

GTT → 1
M3

5 k2 . The non-relativistic matter sources on the wrapped brane are described by

stress energy of eq. (3.20), which Fourier-transforms to τa
b = −µ diag(1, 0, 0, 0, 1). So the

leading order solution for the TT-tensor field is

γµ
ν(k, ρ) =

2µ

3M3
5 k2

{ 2 , µ = ν = 0 ,

−
(

δj
k − kjkk

k2

)

, µ = j, ν = k . (5.57)

Next we need to evaluate the Fourier integrals γµ
ν(~x) =

∫

d3~k
(2π)3

γµ
ν(~k)ei~k·~x. Since a Fourier

integral picks up the dominant contribution from the momenta k ∼ 1/|~x|, in the 4D regime,

when |~x| < rc, we can approximate γµ
ν(k) by (5.57). The remaining integral is easy for
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γ0
0, and yields3 γ0

0 = µ
3πM3

5 |~x|
in this regime. Recalling that µ is the mass per unit length

of string (see eq. (3.16)), so that µ = M
2πr0

, and using as before Gauss law to trade the 5D

Planck scale M5 for the 4D one, M3
5 =

M2
4

2πr0
, we finally obtain

γ0
0(~x) =

M
3πM2

4 |~x|
. (5.58)

To find γj
k, we don’t need to do the Fourier integrals directly. Instead, using Lorentz

invariance, we see from (5.57) that γj
k = C1

|~x|

(

δj
k +C2

xjxk
~x2

)

. Then since γµ
ν is a TT-tensor,

and γj
0 = 0, using transversality ∂jγ

j
k = 0, we get C2 = 1. Further vanishing trace γµ

µ = 0

implies γk
k = −γ0

0, which by comparing with eq. (5.58) sets C1 = − M
12πM2

4
. Thus we find

γj
k(~x) = − M

12πM2
4 |~x|

(

δj
k +

xjxk

~x2

)

. (5.59)

It is convenient to rewrite the solutions by introducing the effective 4D Newton’s constant

GN eff = 1
8πM2

4
. Then, in the leading order for |~x| < rc,

γ0
0(~x) =

8

3
GN eff

M
|~x| ,

γj
k(~x) = −2

3
GN eff

M
|~x|

(

δj
k +

xjxk

~x2

)

. (5.60)

If we were to ignore the scalar field X for the moment, the Newtonian potential VN =

−h0
0/2 would be VN = −4

3 GN eff
M
|~x| , which is a factor of 4/3 larger than the usual

formula of General Relativity. This is a manifestation of the Iwasaki-van Dam-Veltman-

Zakharov discontinuity [17], which signals the presence of the helicity-0 modes in the gravi-

ton multiplet. The factor 4/3 enhancement is precisely what one expects based on other

examples [15], and in this case shows that the extra helicity-0 modes in the spin-2 multiplet

mediate attractive force, just as the helicity-2 modes. Thus, they are not ghosts.

The scalar Green’s function GX is considerably more involved because of the function

β(k2) in the denominator. It behaves differently for generic sub-critical and for near-critical

branes, and so we need to deal with it with some care. First off, we note that the terms

k2 +
3bM4

6

4M3
5 r0

− β(k2) factorize as

k2 +
3bM4

6

4M3
5 r0

− β(k2) =
r2
0k

2

1 − b + r2
0k

2

[(

1− 3(1 − b)M3
5

4bM4
6 r0

)

k2 +

(

3bM4
6

4M3
5 r0

− 1 − b

2r2
0

)]

. (5.61)

After substituting this in eq. (5.56) we find that GX reduces to

GX =
1

M4
6

1

K1(k
r0

1−b
)

K0(k
r0

1−b
)
k +

M3
5

M4
6

r2
0k2

1−b+r2
0k2

[(

1 − 3(1−b)M3
5

4bM4
6 r0

)

k2 +

(

3bM4
6

4M3
5 r0

− 1−b
2r2

0

)] . (5.62)

3Using
R

d3~k
(2π)3

ei~k·~x

~k2
= 1

4π|~x|
.
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Now, we will generically require r0 ≪ M3
5 /M4

6 in order to have the crossover scale for

gravity be much larger than the radius of the compact dimension, rc ≫ r0. Otherwise, we

can never get the theory to behave as a 4D gravity.

For generic sub-critical branes, b <∼ 1, at scales k ≪ 1/r0 the scalar Green’s func-

tion (5.62) is approximated by

GX =
1

M4
6

r0 ln
[

2(1−b)
kr0

]

1 − b − 3M6
5 r2

0

4bM8
6

k2

(

k2 +
2bM4

6

3M3
5 r0

)

ln
[

2(1−b)
kr0

]

, (5.63)

where we have approximated
K1(k

r0
1−b

)

K0(k
r0

1−b
)

with the small argument expansion. Hence at very

large distances, or low momenta, the scalar Green’s function depends on the momentum

only logarithmically, GX ≃ r0 ln[
2(1−b)

kr0
]

(1−b)M4
6

, implying that the configuration space solution for

the scalar field X depends on the distance as X ∼ M/|~x|3 - i.e. as a field in 6D. However,

because the momentum-dependent terms in the denominator of GX are negative, as we

move inwards towards the source, the scalar force grows, and the scalar eventually becomes

strongly coupled as k approaches the pole of (5.63). This happens when k ∼ k∗, where

k2
∗ ≃ 2(1 − b)M4

6

M3
5 r0 ln[2(1−b)

kr0
]
. (5.64)

But this is essentially the same as the crossover momentum in the TT-tensor sector, as we

can see by comparing k∗ with kc given in eq. (4.13), after recalling that M2
4 ≃ M3

5 r0. At

first sight, it looks a little surprising that for resolved codimension-2 branes the strongly

coupled scalars appear even around the vacuum, in contrast to the codimension-1 brane

induced gravity models, as discussed in [19 – 23]. However the 4D vacua aren’t really

vacuum solutions from the point of view of the full brane worldvolume theory because they

contain the flux of the axion Σ and hence source the brane bending term ξ even in the

absence of localized matter sources, as seen in eq. (5.40). This in turn triggers the onset

of strong coupling.

Thus we see that for sub-critical branes with b <∼ 1, inside the regime of length scales

ℓ < r∗ where

r2
∗ ≃ M2

4

2(1 − b)M4
6

ln[
2(1 − b)

kr0
] , (5.65)

the TT-tensor is 4D, but with the wrong tensor structure, as we have discussed following

eq. (5.60), however the scalar sector is in fact strongly coupled. This makes the perturbation

theory around the vacuum on sub-critical branes completely unreliable inside the regime

where gravity might be 4D. The negative signs of the momentum-dependent terms in

the denominator of (5.63) might naively suggest presence of ghosts in this regime, but

at this level of the approximation we cannot conclude that decisively. One exception

to the pathological behavior of the theory is the limit of relativistic sources, for which

τµ
µ = τφ

φ = 0, so that the scalars are never sourced and the tensor sector reduces to the

4D Aichelburg-Sexl solution below the crossover scale. One needs some means for exploring
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the scalar sector beyond linearized theory, perhaps along the lines of [68], or by seeking

exact solutions, before passing on the final verdict on the sub-critical brane models. At the

level of linearized perturbation theory the gravitational effects below the crossover scale

are not calculable.

In the near-critical limit the scalar sector behaves very differently. At distances ℓ ≫ r0,

where kr0 ≃ r0
ℓ ≪ 1 the argument of the Bessel functions Kν will still be very large when

b → 1. We have already noted this in the discussion of shock waves. Hence for distances

below the crossover scale we can use the large argument expansion for Kν ’s, which yields

K1 → K0, as long as r0k ≫ 1 − b. Moreover, we can immediately neglect the negative

terms in the denominator of GX in eq. (5.62) because
(1−b)M3

5

M4
6 r0

= (1 − b) rc
r0

< 1. The scalar

Green’s function is therefore

GX =
1

M4
6

1

k +
M3

5

M4
6

r2
0k2

1−b+r2
0k2 (k2 + 3

4rcr0
)
. (5.66)

where rc = M5
3 /M4

6 is the TT-tensor crossover scale, as per eq. (4.19). Now, it is convenient

to define the scale rvac by

1 − b =
r2
0

r2
vac

, (5.67)

In the limit b → 1 we have rvac =
√

1 − b r0
1−b ≪ r0

1−b , and so the scale rvac is always smaller

than the size of the conical throat surrounding the brane. This is why the scale rvac may

compete with rc for the control over the scalar sector. Both rvac and rc are smaller than the

size of the throat, and the details of sub-crossover dynamics depend on their ratio. First,

note that for momenta k such that rvack > 1, we can expand
r2
0k2

1−b+r2
0k2 ≃ 1 + O( 1−b

r2
0k2 ) and

keep only the first term. The scalar Green’s function in this limit at momenta r0k < 1− b

reduces to

GX =
1

M3
5

1
k
rc

+ k2 + 3
4rcr0

. (5.68)

Thus for momenta k > max (1/rc, 1/rvac), the theory looks 4D, but the scalar has a mass

term, m2
X = 3

4rcr0
. Therefore its long range effects have a Yukawa suppression ∝ exp(−mXr).

Hence in the range of scales 1
mX

< ℓ < min (rc, rvac) the scalar field exchange will lead to

negligible, exponentially suppressed effects compared to the TT-gravitons. This mass term

is completely analogous to a brane-localized mass term of a bulk scalar. In such models

the scalar is repelled from the brane, since it prefers to reside in the region of space where

its inertia is minimized. This resembles Meissner effect in superconductivity, where the

mass term pushes the magnetic field outside of the superconducting medium. In our case

however, the scalar is also pulled back to the brane by the brane-localized kinetic terms,

and the result is the Yukawa suppression alone, which is manifest in (5.68) in the same

coupling 1/M3
5 as for the TT-tensors below the crossover scale, e.g. in eq. (5.57). Similar

phenomena were also studied recently for gauge fields in gaugephobic models [69].

Although X may be Yukawa-suppressed, so its direct long range forces will be small

compared to those arising from the TT-tensor sector, the brane bending term ξ may yet

yield a long range tail, as is clear from eq. (5.40). We see that ξ is proportional to k2X, and
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this will in general lead to long range effects that may dominate the Yukawa-suppressed

effect from direct X-exchange. It turns out that the ξ-induced effects will be parametrically

smaller than the dominant TT-tensor fields, as we will show below.

At distances ℓ > rc, the linear term in k in the denominator of (5.68) dominates the

momentum transfer in scalar exchange, modifying the theory to a 5D one, and eventually,

after resuming the corrections which we neglected in setting K1/K0 ≃ 1, one would see

how the theory changes to 6D. When rvac > rc the story of the scalar dynamics ends here.

However, when rvac < rc, in the regime of scales rvac < ℓ < rc below the crossover

scale, we can approximate the fraction in the denominator of (5.66) by
r2
0k2

1−b+r2
0k2 ≃ r2

0k2

1−b .

Thus, GX−1 ∼ k +
M3

5 r2
0

(1−b)M4
6
k2(k2 + 3

4rcr0
). Then, since the mass term m2

X is larger than the

momenta in this regime, because k2 < 1/r2
vac so that k2

m2
X

< 4rcr0
3r2

vac
= (1 − b) 4rc

3r0
< 1, the

Green’s function is approximately

GX =
1

M4
6

1

k + 3r2
vac

4r0
k2

. (5.69)

What happened here is that due to the momentum dependence of the effective coupling,

the scalar field mass term got overcompensated and the field became essentially massless

all the way out to a new scalar crossover scale, given by (using eq. (5.67))

Rc =
3

4

r2
vac

r0
=

3

4

r0

1 − b
, (5.70)

which is essentially equal to the length of the throat inside which bulk gravity looks 5D.

Below Rc, the scalar propagator reduces to GX → 4r0

3M4
6 r2

vack
2 < 1

M3
5k2 , because rc < r0

1−b in

the near-critical limit. Thus, when rvac > rc, the scalar remains massless all the way out

to Rc, but below the crossover scale it couples more weakly than the TT-tensor.

We can now put together the various contributions to the fields of a static massive

ring on the brane at distances below the crossover scale. The scalar Green’s function for

near-critical branes below the crossover scale is well approximated by

GX =

{ 1
M3

5

1
k2+m2

X
, rc < rvac,

1
rc

< k ,

4(1−b)
3M4

6 r0

1
k2 , rvac < rc,

1
rc

< k < 1
rvac

.
(5.71)

The scalar field X sourced by a ring of mass with Fourier-transformed stress energy tensor

τa
b = −µ diag(1, 0, 0, 0, 1) is then, using the solution (5.45) for this range of scales, and

again replacing µ = M
2πr0

and M3
5 =

M2
4

2πr0
as in the earlier discussion of TT-tensors,

X =

{− M
3M2

4

1
k2+m2

X
, rc < rvac,

1
rc

< k ,

2M
9M2

4

(1−b)rc

r0

1
k2 , rvac < rc,

1
rc

< k < 1
rvac

,
(5.72)

while the brane bending, normalized to r0, is, from (5.40),

ξ

r0
=











− rcr0
r2
vac

M
6M2

4

(

10
k2 − 1

k2+m2
X

)

, rc < rvac,
1
rc

< k ,

(1−b)rc

r0

M
3M2

4

1
k2 + constant , rvac < rc,

1
rc

< k < 1
rvac

.
(5.73)
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The constant in the brane bending transforms to a gauge-dependent contact term ∝ δ(3)(~x),

which is ultralocal and hence we can neglect it altogether. The configuration space solu-

tions4 for the scalars X and ξ are therefore

X =







− M
12πM2

4 |~x|
e−mX|~x| , |~x| < rc < rvac ,

(1−b)rc

r0

M
18πM2

4 |~x|
, rvac < |~x| < rc ,

(5.74)

and

ξ

r0
=











− rcr0
r2
vac

M
24πM2

4 |~x|

(

10 − e−mX|~x|
)

, |~x| < rc < rvac ,

(1−b)rc

r0

M
12πM2

4 |~x|
, rvac < |~x| < rc .

(5.75)

Now, in the case when rc < rvac, the scalar field X will have a very short range due

to its mass. Indeed, since m−2
vec ∼ r0rc is the geometric mean between the brane radius

and the crossover scale, m−1
vec will be quite small. In fact, if the brane size is set by the

4D Planck length and the crossover scale by the current horizon size, r0 ∼ 1/M4, and

rc ∼ 1/H0 respectively, m−1
X will be near the table top bounds of about 0.1mm. Thus X

is de facto decoupled at the scales where we normally probe 4D gravity. On the other

hand, the brane bending can still simulate a long range effect which scales as 1/|~x| due to

the momentum dependence of the couplings. However, the strength of its contributions is

a factor rcr0
r2
vac

= rc
rvac

r0
rvac

≪ 1 down compared to the TT-tensor contributions in eq. (5.60).

In the case when rvac < rc, the scalars remain essentially massless and source long range

fields. However, their strength is still suppressed, this time by (1−b)rc

r0
≪ 1, by definition

of the near-critical limit. While the scalar effects become more important as this factor

becomes smaller, so do the strong coupling effects which we cannot neglect away from the

near-critical limit. Indeed, as (1−b)rc

r0
→ 1, where the brane bending effects could compete

with the long range fields of TT tensors, the strong coupling effects become very important,

and we lose calculability in linearized perturbation theory below the crossover scale.

Hence in either case the long range effects of the scalars in linearized perturbation

theory around the near-critical vacuum cannot compete with the TT-tensors, as long as the

perturbative treatment is valid. We can therefore ignore the scalars in the formula (5.49).

The long range fields are determined by γµ
ν alone, which are given in eq. (5.60). Clearly,

these solutions do not look like 4D General Relativity. Instead, in the leading order they

really mimic a scalar tensor theory, due to the presence of the helicity-0 contributions. To

see this, we can compare the solutions (5.60) with the spherically symmetric linearized

solution in the PPN approximation [64]. For the purpose of this comparison, we define

ĜN = 4
3GN eff , so that

γ0
0 = 2ĜN

M
|~x| ,

γj
k = −1

2
ĜN

M
|~x| δ

j
k − 1

2
ĜN

Mxjxk

|~x|3 . (5.76)

4Which we find using
R

d3~k
(2π)3

ei~k·~x

k2+m2
X

= 1
4π|~x|

e−mX|~x|.
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Comparing to [64] (taking into account overall sign difference reflecting our conventions)

we find that the solution (5.76) mimics a Brans-Dicke theory with γ = 1
2 , or therefore,

with the Brans-Dicke ω parameter equal to zero, where the parameter ω is defined in the

usual way in the Brans-Dicke action as SBD =
∫

d4x
√

g(ΦR − ω(∇Φ)2/Φ). This theory is

in conflict with observational data as it stands, and hence is not a realistic description of

our Universe.

However, it is possible that non-linear effects, which we have neglected throughout this

work, could play a role here. Indeed, even in conventional General Relativity, nonlinearities

start to show up at distances comparable with the gravitational radii of the sources. In

brane induced gravity, and other frameworks that strive to modify gravity in the IR, the

nonlinear corrections will become important even sooner than the nonlinearities in General

Relativity [18 – 23]. Our results are found in linearized perturbation theory around a near-

critical vacuum, and so it is conceivable (although not certain) that different strong coupling

effects at higher orders in perturbation theory might improve the behavior of long range

fields of masses far from the source but well below the crossover scale. Alternatively, it is

possible that additional tweaks of the bulk theory, for example by curving the bulk locally,

could change how the helicity-0 mode couples to brane matter. Such methods are widely

used in the construction of string landscapes [3], and might also be useful here.

We stress again that regardless of the ratio of rvac/rc the scalar couplings remain

consistently weak for static sources on near-critical branes with b → 1. The static solutions

are governed by Euclidean momenta, and so they are always finite in linearized theory

around near-critical vacua, in contrast to the fields of masses which perturb generic sub-

critical vacua. Thus linearized perturbation theory remains under control on near-critical

vacua. This as we already mentioned does not guarantee that the linearized solutions will

remain dominant close to the masses that source the fields. Further study of these issues,

to ascertain how likely it is that nonlinear phenomena may yield any additional screening of

helicity-0 modes, hence seems warranted. The near-critical vacua at the very least provide

us with a controllable new arena where such phenomena could be studied.

The near-critical propagating solutions, on the other hand, also remain under con-

trol, albeit their dynamics is more subtle. The issue is that there may be new poles at

Lorentzian momenta k2 = −k2
vac = −1−b

r2
0

, in the solutions for ξ and X, given respectively by

eqs. (5.40), (5.45) and (5.53), and their approximations below the crossover scales. Clearly,

these poles never play any role for static configurations, which are controlled by Euclidean

momenta for which the fields remain finite. However one may worry if new infinities could

plague the linearized theory once a weak time dependence is allowed. Now, on a generic

sub-critical brane the poles at k2 = −k2
vac reside practically on the 4D cutoff ∼ 1/r0, deep

in the strongly coupled regime of the sub-critical linearized theory and hence can be com-

pletely ignored at large distances as a UV mirage. On the other hand, in the near-critical

limit b → 1 the scale kvac becomes very low, and may be much lower than the crossover

scale 1/rc. However, as we will now explain, in this case these poles are harmless because

they merely point to a breakdown of a gauge fixing of the linearized theory, which is fixed

by an interchange of scalar modes. The easiest way to see this is to reconsider the formula
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for the ξ field, eq. (5.40), and the boundary condition for ∆X ′, eq. (5.41), when Lorentzian

momentum is k2 = −k2
vac = −1−b

r2
0

. Then, eq. (5.40) indicates that ξ may diverge; however

since the brane bending must be bounded, this equation must be reinterpreted by multi-

plying it by 1 − b + r2
0k

2 before setting k2 = −k2
vac, and then demanding that ξ is finite,

which means that the r.h.s. must vanish identically. This fixes X on the brane to

X

∣

∣

∣

∣

k2=−k2
vac

=
2r2

0

3M3
5 (1 − b − bM4

6 r0

M3
5

)
τφ

φ

∣

∣

∣

∣

k2=−k2
vac

, (5.77)

while now ξ is not determined by this boundary condition. Since X is now fixed by

the matter source, it cannot be freely chosen to satisfy the boundary condition for ∆X ′

in (5.41). This is what fixes ξ: indeed, using (5.40) and (5.42) we can rewrite (5.41) as

∆X ′
∣

∣

∣

∣

k2=−k2
vac

=
M3

5

M4
6

[

(

1−b− bM4
6 r0

M3
5

)

ξ

2r3
0

− 1 − b

1 − b − bM4
6 r0

M3
5

τφ
φ

6M3
5

− τα
α

6M3
5

]

∣

∣

∣

∣

k2=−k2
vac

, (5.78)

so that for given sources and for X fixed by (5.77) when k2 = −1−b
r2
0

we can choose ξ

to satisfy (5.78). Therefore the Lorentzian poles at k2 = −k2
vac are spurionic, and can

be ignored in the linearized perturbation theory on near-critical branes. The linearized

theory around the vacuum on such generic near-critical backgrounds remains under control,

without dramatic instabilities, and mimicking Brans-Dicke theory with ω = 0, although we

stress again that one has to reevaluate it against the higher order corrections closer to the

source, because of the issues related to the Vainshtein scale and strong coupling at higher

orders.

6. Conclusions

Our main result is the observation that properly regulated brane induced gravity theo-

ries, which yield calculable long distance gravitational fields, really behave as a semiclas-

sical landscape of vacua. Treating gravity classically, these models can impersonate 4D

worlds between the UV cutoff that resolves the core of the gravity-localizing defect and

the crossover scale, if their Scherk-Schwarz sector is carefully tuned to yield 4D Minkowski

vacua. While we have explicitly worked with codimension-2 defects, we feel that similar

conclusions should extend to any setups with codimension ≥ 2. In the case of codimension-

2, we see that the brane vacua can remain completely flat, while the bulk readjusts to ab-

sorb the tension as deficit angle. Separating them there will be mismatched configurations,

where the tensional pressure in the compact direction may not be precisely cancelled, which

are either nonstationary, or never approximate 4D behavior. Static supercritical branes

must be singular, just like supercritical local strings in 4D [54]. However in this case there

should exist nonsingular inflating solutions, that should really be the correct vacua for

supercritical branes.

We also find that the cosmological constant problem changes its guise rather dramati-

cally in codimension-2 setups. Although the theory has many 4D flat vacua with Minkowski

metric, the effective 4D Planck scale, and for sub-critical tensions, the crossover scale out to
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which gravity looks 4D, are very sensitive to the brane tension. These parameters depend

on the tension directly, as does the sub-critical crossover scale (see eq. (4.22)) or through

the compactification radius of the wrapped 4-brane, as does the effective 4D Planck scale.

So if the theory is to mimic a weak 4D gravity over a large spatial region, which looks flat

and static, for a given brane and bulk Planck scales M5 and M6 and a fixed brane radius

r0 one must tune the brane tension precisely. Changes of brane tension will generically

lead to proportional changes of the crossover scale and 4D gravitational coupling, requiring

appropriate retunings. However in the near-critical limit, where the bulk compactifies to a

cone so that 4D gravity first changes to a 5D one, the crossover scale saturates at a value

completely independent of the tension, rc = M3
5 /M4

6 . To get this to be of the order of the

current horizon size, H−1
0 ∼ 1028cm, and ensure that the rings of matter on the brane look

pointlike at energies below a TeV, one needs M6
>∼ TeV, and therefore M5

<∼ 1019GeV.

Further to reproduce the 4D Newton’s constant below the crossover scale, one needs to

pick r0
>∼ 10−19GeV−1. These numbers are rather curious. Clearly, one must tune the

theory to make sure that the brane is very thin, with many hidden sector fields, to get such

hierarchies. We don’t have much to add to the discussion of how to do it, but merely note

that this is in line with the current philosophy of the brane induced gravity models [15].

While some work along the lines of embedding the theory into string theory, that would

provide the framework for its full UV completion, has been pursued [60 – 62], the existing

constructions are really semiclassical models where gravity is treated classically. Adopting

this possibility, one may at least explore the low energy consequences of such models.

Once we consider gravity of localized static masses on the brane, we find that for sub-

critical tensions there is a strong coupling scale in the vacuum itself, which is essentially

the same as the crossover scale. Thus in the regime where gravity may appear 4D, lin-

earized perturbation theory does not apply because the scalar modes are strongly coupled.

However in the near-critical limit the linearized perturbation theory around the vacuum

is under control. We find that it does not contain instabilities, and generates long range

fields which are, to the leading order, the same as in the Brans-Dicke theory with ω = 0.

This would be in conflict with tests of gravity in Solar System and beyond. However,

throughout this work we have taken the bulk to be locally flat. Adding bulk fields and

curvature will increase the diversity of possible solutions and might yield additional effects

screening the helicity-0 mode in the spin-2 sector, perhaps similarly to what happens in

string landscape constructions [3]. Moreover, the nonlinear corrections might play some

role too as advocated in [18, 19].

This discussion shows that many questions remain open. Clearly, the most interesting

phenomenological issues concern the stabilization or decoupling of the helicity-0 modes. It

is interesting to explore the theory for dangerous instabilities beyond the linear order. It

also remains to see if the brane induced gravity models can be consistently derived from

microscopic models that admit plausible UV completions, generating M4 ≫ M6. In other

words, do such landscapes even exist beyond a classical action, that one can write for them?

Finally, it would be interesting to see if the new guise of the cosmological constant problem,

and in particular the serendipitous insensitivity of the crossover scale from brane tension

in the near-critical limit, might yield some new avenues for going around the venerated
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Weinberg no-go theorem [1], that is still the main obstruction to having a mechanism for

protecting a small 4D vacuum curvature from quantum radiative corrections. These issues

are outside of the scope of the present work, and we can only hope that our sketch of such

a diverse new landscape with a different manifestation of the vacuum energy problem may

motivate the search for their resolutions.
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